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Abstract

The main goal of this thesis is to investigate the bounded-

ness, invariant intervals, semi-cycles and global attractivity of

all nonnegative solutions of the equation

xn+1 =
βxn + γxn−k

A+Bxn + Cxn−k
, n = 0, 1, 2, . . .

where the parameters β, γ, A, B and C and the initial conditions

x−k, x−k+1, . . . , x0 are non-negative real numbers, k = {1, 2, . . .}.

We give a detailed description of the semi-cycles of solutions,

and determine conditions that satisfy the global asymptotically

stable of the equilibrium points.

In particular, this monograph is a generalization of the ratio-

nal difference equation that was investigated in [13].

vi



 

HuLiStevic[13] 



CHAPTER 1

Introduction

1.1 Preliminary

The dynamic of any situation refers to how the situation changes over

the course of time. A dynamical system is a physical setting together with

rules for how the setting changes or evolves from one moment of time to the

next. In simplest terms, a dynamical system is a system that changes over

time.

For example, a moving body may be represented by state variable of

velocity and position over time. Model of population dynamic, the system

state variable may be the number of population that migrate, born and dead

and the existing population.

Dynamical systems theory is an area of applied mathematics used to

1
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describe the behavior of complex dynamical systems, usually by employing

differential equations or difference equations. When differential equations

are employed, the theory is called continuous dynamical systems. When

difference equations are employed, the theory is called discrete dynamical

systems. When the time variable runs over a set which is discrete over

some intervals and continuous over other intervals or is any arbitrary time-

set such as a cantor set then one gets dynamic equations on time scales.

Some situations may also be modeled by mixed operators such as differential-

difference equations.

This theory deals with the long-term qualitative behavior of dynam-

ical systems, and the studies of the solutions to the equations of motion of

systems that are primarily mechanical in nature; although this includes both

planetary orbits as well as the behavior of electronic circuits and the solu-

tions to partial differential equations that arise in biology. Much of modern

research is focused on the study of chaotic systems.

One basic goal of the mathematical theory of dynamical systems is

to determine or characterize the long-term behavior of the system. Different

kinds of dynamical systems have common characteristics: Symbolic, discrete,

continuous, and fractal dynamic systems . In the study of dynamic systems

we try to determine the future behavior given the past and present behaviors.
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1.2 Equilibrium Points

Let us consider the difference equation

x(n+ 1) = f(x(n)) (1.2.1)

When we study the dynamics of a difference equation, we attempt to do the

following actions: determine equilibrium points and periodic points, analyze

their stability and asymptotic stability, and determine periodic points. In

this chapter we give rigorous definitions of all these notions for the difference

equation (1.2.1).

Definition 1.1. A point x̄ in the domain of f(x) is said to be an equilibrium

point of equation (1.2.1) if it is a fixed point of f , i.e., f(x̄) = x̄.

Graphically speaking, an equilibrium point of a map f(x) is a point

where the curve y = f(x) intersects the diagonal line y = x.

Example 1.1. The equilibrium points of the cubic map f(x) = x3 can be

obtained by solving the equation x3 = x or x3 − x = 0.

Hence, there are three equilibrium points −1, 0, and 1 for this map (see

Figure 1.1).

1.3 Stability Theory

One of the main objectives in the theory of dynamical systems is the

study of the behavior of orbits near equilibrium points, in other words, the
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x

f(x)

(1,1)

(0,0)

(-1,-1)

y = x
f(x) = x3

Figure 1.1: The equilibrium points of f(x) = x3 are the intersection points

with the diagonal line.

behavior of solutions of a difference equation near equilibrium points. Such

a program of investigation is called stability theory, which henceforth will be

our main focus in this chapter and the next. We begin our exposition by

introducing the basic notions of stability.

Definition 1.2. [10] Let x̄ be an equilibrium point of equation (1.2.1):

(a) The equilibrium point x̄ of equation (1.2.1) is called stable if for every

ε > 0 there exists δ > 0 such that |x0 − x̄| < δ implies |xn − x̄| < ε for

all n > 0.

(b) The equilibrium point x̄ of equation (1.2.1) is called attracting if there

exists η > 0 such that |x0 − x̄| < η implies lim
n→∞

x(n) = x̄.
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If η =∞, then x̄ is called a global attractor .

(c) The equilibrium point x̄ of equation (1.2.1) is called globally

asymptotically stable if it is stable and a global attractor.

(d) The equilibrium point x̄ is called unstable if it is not stable.

Example 1.2. Consider the difference equation

xn+1 = x2
n − 2xn + 1

So f(x) = x2 − 2x+ 1. To find the equilibrium points, let

x̄ = x̄2 − 2 x̄+ 1

which implies x̄ = 1 or x̄ = 2 are equilibrium points.

Suppose at some point the solution of a difference equation deviates

from the equilibrium value. Will the solution return to the equilibrium value?

This problem is called stability problem of the difference equation.

Suppose we are studying the growth of a population and suppose the

population has reached a point where for all intents and purposes it is not

changing. We say that the population is in equilibrium with its surrounding

and the value of the population is the population equilibrium value. Now

suppose there is a disaster and 10% of the population is suddenly killed. Will

the population return to its original equilibrium value? Will it oscillate? Will

it become extinct? Will the population find a new equilibrium value?

We called the equilibrium value is attracting or stable. Regardless the

choice of x0, the solution of a stable difference equation will stabilize itself
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even if it is temporarily perturbed from its course. The equilibrium is called

unstable (repelling) if the solution is perturbed, it remains at its perturbed

value and does not return to its original value[22].

The following theorems are used to characterize the stability of the

equilibrium points.

Theorem 1.1. Let x̄ be an equilibrium point of the difference equation

xn+1 = f(xn) (1.3.1)

where f is continuously differentiable at x̄, then the following statements are

true:

(i) If |f ′(x̄)| < 1, then x̄ is asymptotically stable.

(ii) If |f ′(x̄)| > 1, then x̄ is unstable.

In the difference equations, the equilibrium point x̄ is said to be

hyperbolic if |f ′(x̄)| 6= 1, and unhyperbolic if |f ′(x̄)| = 1.

The following two theorems treat stability of unhyperbolic points.

Theorem 1.2. Let x̄ be an equilibrium point of the difference equation

(1.3.1), and suppose f ′(x̄) = 1. The following statements are true:

(i) If f ′′(x̄) 6= 0, then x̄ is unstable.

(ii) If f ′′(x̄) = 0 and f ′′′(x̄) > 0 then x̄ is unstable.

(ii) If f ′′(x̄) = 0 and f ′′′(x̄) < 0 then x̄ is asymptotically stable.



1.3 Stability Theory 7

Definition 1.3 (Schwarzian Derivative). Let f be a continuous and differen-

tiable function for three level in some interval I. The Schwarzian Derivative

Sf(x) of f at a point x ∈ I , where f ′(x) 6= 0 , is given by

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

[
f ′′(x)

f ′(x)

]2

Theorem 1.3. Let x̄ be an equilibrium point of the difference equation

(1.3.1), and suppose f ′(x̄) = −1. The following statements are true:

(i) If Sf(x̄) < 0, then x̄ is asymptotically stable.

(ii) If Sf(x̄) > 0, then x̄ is unstable.

where Sf(x) is the Schwarzian Derivative of f .

Example 1.3. Consider the map f(x) = x2 + 3x on the interval [−3, 3].

Find the equilibrium points and then determine their stability.

Solution. The equilibrium points of f are obtained by solving the equation

x2 + 3x = x

Thus, there are two equilibrium points: x̄1 = 0 and x̄2 = −2

So for x̄1, we have f ′(0) = 3 > 1, which implies by theorem (1.1) that x̄1 = 0

is unstable.

For x̄2 = −2, we have f ′(−2) = −1, which requires the employment of

theorem (1.3). We observe that

Sf(−2) = −f ′′′(−2)− 2

2
[f ′′(−2)]

2
= −6 < 0

Hence, x̄2 = −2 is asymptotically stable.
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1.4 The Cobweb Diagram

One of the most effective graphical iteration methods to determine

the stability of equilibrium points is the cobweb diagram1. On the xy–plane,

we draw the curve y = f(x) and the diagonal line y = x on the same plot.

We start at an initial point x0. Then we move vertically until we hit the

graph of f at the point (x0, f(x0)). We then travel horizontally to meet the

line y = x at the point (f(x0), f(x0)). This determines f(x0) on the x-axis.

Figure 1.2: Cobweb (Stair step) diagram.

To find f 2(x0), we move again vertically until we strike the graph of f at the

point (f(x0), f 2(x0)); and then we move horizontally to meet the line y = x at

1It is also called the stair-step diagram.
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the point (f 2(x0), f 2(x0)). Continuing this process, we can evaluate all of the

points in the orbit of x0, namely, the set {x0, f(x0), f 2(x0), . . . , fn(x0), . . .}

(See Figure (1.2)).

1.5 Periodicity and General Background

The most important notion in the study of dynamical systems is the

notion of periodicity. For example, the motion of a pendulum is periodic.

Another example, the sensitivity of the suppliers to price is equal to the

sensitivity of consumers to price, then prices oscillate between two values

only.

Definition 1.4 (Periodicity). Let b be in the domain of f , then b is called a

periodic point of f if for some positive integer k, fk(b) = b. Hence a point is

k-periodic if it is a fixed point of fk, that is, if it is an equilibrium point of

the difference equation

x(n+ 1) = fk(x(n))

The periodic orbit of b,

O(b) = {b, f(b), f 2(b), . . . , fk−1(b)},

is often called a k-cycle.

Definition 1.5 (eventually k-periodic). Let b be in the domain of f , then

b is called eventually k-periodic if for some positive integer m, fm(b) is a

k-periodic point. In other words, b is eventually k-periodic if

fm+k(b) = fm(b)
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Graphically, we can find the k-periodic point of such a function by

finding the point for which the diagonal y = x intersects the graph of fk(x)

and then finding the x-coordinate of such a point.

Example 1.4. Take the equation

x(n+ 1) = x2(n)− 1

Then f(x) = x2 − 1. As we want to find the 2-periodic points, we must find

f 2(x).

We know that f 2(x) = f(f(x)) = f(x2 − 1) = x4 − 2x2. We will plot

f 2 and see where will it intersect y = x.

Figure 1.3: 2-periodic points of x(n+ 1) = x2(n)− 1

As we see in the figure (1.3), the 2-periodic points of our equation are

−0.1, −0.622, 0 and 1.618.

Definition 1.6. Let b be a k-period point of f . Then b is:

(i) stable if it is a stable fixed point of fk.
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(ii) asymptotically stable if it is an asymptotically stable fixed point of fk.

(iii) unstable if it is an unstable fixed point of fk.

Theorem 1.4. Let O(b) = {b = x(0), x(1), . . . , x(k − 1)} be a k-cycle of a

continuously differentiable function f . Then the following statements hold:

(i) The k-cycle O(b) is asymptotically stable if

|f ′(x(0))f ′(x(1)), . . . , f ′(x(k − 1))| < 1.

(ii) The k-cycle O(b) is unstable if

|f ′(x(0))f ′(x(1)), . . . , f ′(x(k − 1))| > 1.



CHAPTER 2

High Order Difference

Equations

2.1 General theory of Linear Difference

Equations

The standard form of a kth-order linear difference equation is given by

y(n+ k) + p1(n) y(n+ k − 1) + · · ·+ pk(n) y(n) = g(n) (2.1.1)

where pi(n) and g(n) are real-valued functions defined for n > n0 and pk(n) 6=

0 for all n > n0.

If g(n) is identically zero, then (2.1.1) is said to be a homogeneous

equation. Otherwise, it is called a nonhomogeneous equation.

12
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By letting n = 0 in equation (2.1.1), we obtain y(k) in terms of

y(k − 1), y(k − 2), . . . , y(0). Explicitly, we have

y(k) = −p1(0) y(k − 1)− p2(0) y(k − 2)− · · · − pk(0) y(0) + g(0)

Once y(k) is computed, we can go to the next step and evaluate y(k + 1) by

letting n = 1 in equation (2.1.1). By repeating this process, it is possible to

evaluate all y(n) for n > k.

Theorem 2.1. [10] The initial value problems of equation (2.1.1) have a

unique solution {y(n)}∞n0
or simply y(n).

2.1.1 Linear Homogeneous Equations

In the following, we are going to study the general theory of kth-order

linear homogeneous difference equations of the form

x(n+ k) + p1(n)x(n+ k − 1) + · · ·+ pk(n)x(n) = 0 (2.1.2)

Definition 2.1. [10] The functions f1(n), f2(n), . . . , fr(n) are said to be lin-

early independent for n > n0 if whenever

a1 f1(n) + a2 f2(n) + · · ·+ ar fr(n) = 0

for all n > n0, then we must have a1 = a2 = · · · = ar = 0.

Otherwise, the functions are said to be linearly dependent if one or

more of ai’s are not equal zero.

Definition 2.2. [10] A set of k linearly independent solutions of equation

(2.1.2) is called a fundamental set of solutions.
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Definition 2.3. [10] The Casoratian W (n) of the solutions

x1(n), x2(n), . . . , xr(n) is given by

W (n) = det


x1(n) x2(n) · · · xr(n)

x1(n+ 1) x2(n+ 1) · · · xr(n+ 1)
...

...
. . .

...

x1(n+ r − 1) x2(n+ r − 1) · · · xr(n+ r − 1)


Lemma 2.2. Suppose that pk(n) 6= 0 for all n > n0, then the Casoratian

W (n) 6= 0 for all n > n0 if and only if W (n0) 6= 0.

Theorem 2.3. The set of solutions x1(n), x2(n), . . . , xk(n) of equation

(2.1.2) is a fundamental set if and only if for some n0 ∈ Z+, the Caso-

ratian W (n0) 6= 0.

Example 2.1. Consider the third-order difference equation

x(n+ 3) + 3x(n+ 2)− 4x(n+ 1)− 12x(n) = 0

Show that the functions 2n, (−2)n, and (−3)n form a fundamental set of

solutions of the equation.

Solution. First, let us verify that 2n is a legitimate solution by substituting

x(n) = 2n into the equation

2n+3 + 3 (2n+2)− 4 (2n+1)− 12 (2n) = 2n [8 + 12− 8− 12] = 0.

In the same way, we verify that (−2)n and (−3)n are solutions of the equation.

Second, to affirm the linear independent of these solutions we construct

the Casoratian

W (n) = det


2n (−2)n (−3)n

2n+1 (−2)n+1 (−3)n+1

2n+2 (−2)n+2 (−3)n+2


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Thus

W (0) = det


1 1 1

2 −2 3

4 4 9

 = −20 6= 0.

By theorem (2.3) the solutions 2n, (−2)n and (−3)n are linearly independent,

and form a fundamental set of solutions.

Theorem 2.4 (Fundamental Theorem). [10] If pk(n) 6= 0 for all n > n0,

then equation (2.1.2) has a fundamental set of solutions for n > n0.

Lemma 2.5. [10] If x1(n), x2(n), . . . , xr(n) are solutions of equation (2.1.2),

then

x(n) = a1 x1(n) + a2 x2(n) + · · ·+ ar xr(n)

is also a solution of equation (2.1.2), where a1, a2, . . . , ar are real numbers.

This lemma leads to define the general solution of the homogeneous

equation as follows.

Definition 2.4. [10] Let {x1(n), x2(n), . . . , xk(n)} be a fundamental set of

solutions of equation (2.1.2). Then the general solution of equation (2.1.2)

is given by x(n) =
k∑
i=1

aixi(n), for arbitrary constants ai.

2.1.2 Linear Homogeneous Equations with Constant

Coefficients

Consider the kth-order difference equation

x(n+ k) + p1 x(n+ k − 1) + p2 x(n+ k − 2) + · · ·+ pk x(n) = 0 (2.1.3)
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where the pi’s are constants and pk 6= 0.

Suppose that our solution is in the form of λn, where λ is either a real

or a complex number. By substituting this value in (2.1.3), we get

λk + p1 λ
k−1 + · · ·+ pk = 0 (2.1.4)

This equation is called the characteristic equation of equation (2.1.3), and

its roots {λ1, λ2, . . . , λk} are called the characteristic roots .

There are different cases of the characteristic roots, so the general

solution of equation (2.1.3) has different situations depending on the cases

of the characteristic roots:

Case(a): Suppose that the characteristic roots {λ1, λ2, . . . , λk} are distinct.

The fundamental set of solutions will be {λn1 , λn2 , . . . , λnk}, Conse-

quently, the general solution of equation (2.1.3) is

x(n) =
k∑
i=1

ai λ
n
i

where ai’s are constant numbers.

Example 2.2. Find the general solution of

x(n+ 2)− x(n+ 1)− 2x(n) = 0

Solution. To find the homogeneous solution, we solve the charac-

teristic equation

λ2 − λ− 2 = 0

⇒ (λ+ 1)(λ− 2) = 0
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implies that λ1 = −1 and λ2 = 2

So the homogeneous solution is

x(n) = a1 λ
n
1 + a2 λ

n
2 = a1 (−1)n + a2 2n.

Case(b): Suppose that the characteristic roots {λ1, λ2, . . . , λk} all are equal,

so the general solution is given by

x(n) =
k∑
i=1

λni (ai0 + ai1 n+ · · ·+ ai,mi−1 n
mi−1)

where ai0, ai1, · · · , ai,mi−1 are constant numbers.

Example 2.3. Find the general solution of

x(n+ 2) + x(n+ 1) +
1

4
x(n) = 0

Solution. To find the homogeneous solution, we solve the charac-

teristic equation

λ2 + λ+
1

4
= 0

⇒ (λ+
1

2
)(λ+

1

2
) = 0

implies that λ1 = λ2 =
−1

2
.

So the homogeneous solution is

x(n) = a1 λ
n + a2 nλ

n

= a1

(
−1

2

)n
+ a2 n

(
−1

2

)n
=

(
−1

2

)n
(a1 + a2 n) .
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2.1.3 Linear Nonhomogeneous Equation

In the last two subsections we study the solution of the homogeneous

difference equations. Here we will focus on solving the kth-order linear non-

homogeneous equation

y(n+ k) + p1(n) y(n+ k − 1) + · · ·+ pk(n) y(n) = g(n) (2.1.5)

where pk(n) 6= 0 for all n > n0. The sequence g(n) is called the forcing term,

the external force, the control or the input of the system.

The equation (2.1.5) represents a physical system in which g(n) is the

input and y(n) is the output. The designing engineer uses g(n) to force the

system to behave in a specified way (control the output y(n)).

Theorem 2.6. [10] If y1(n) and y2(n) are solutions of equation (2.1.5), then

y(n) = y1(n)− y2(n)

is a solution of the corresponding homogeneous equation

y(n+ k) + p1(n) y(n+ k − 1) + · · ·+ pk(n) y(n) = 0 (2.1.6)

Theorem 2.7. [10] Any solution y(n) of equation (2.1.5) may be written as

y(n) = yp(n) +
k∑
i=1

ai yi(n)

where {y1(n), y2(n), . . . , yk(n)} is a fundamental set of solutions of the ho-

mogeneous equation (2.1.6).

Example 2.4. Find the general solution of

x(n+ 2)− 3x(n+ 1) + 2x(n) = 4n − n2



2.1 General theory of Linear Difference Equations 19

Solution. The general solution is

xg(n) = xh(n) + xp(n)

where xh(n) is the homogeneous solution and xp(n) is the particular solution.

To find the homogeneous solution, we solve the characteristic equation

λ2 − 3λ+ 2 = 0

implies

(λ− 1)(λ− 2) = 0

implies that

λ = 1 or λ = 2

Then the homogeneous solution is

xh(n) = a λn + b λn

xh(n) = a + b 2n

Now, to find the particular solution, let

xp(n) = α1 4n + α2 n
2 + α3 n+ α4

Substituting this potential solution into the the particular solution formula

and equating coefficients as follows:

xp(n) = α1 4n + α2 n
2 + α3 n+ α4

xp(n+ 1) = α1 4n+1 + α2 (n+ 1)2 + α3 (n+ 1) + α4

xp(n+ 2) = α1 4n+2 + α2 (n+ 2)2 + α3 (n+ 2) + α4
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Then, substitute the above values of xp’s in the general equation to get

[
α1 4n+2 + α2 (n+ 2)2 + α3 (n+ 2) + α4

]
− 3

[
α1 4n+1 + α2 (n+ 1)2 + α3 (n+ 1) + α4

]
+ 2

[
α1 4n + α2 n

2 + α3 n+ α4

]
= 4n − n2

this formula can simplified to

α1 4n
[
42 − 3 × 4 + 2

]
+ α3

[
n+ 2− 3 n− 3 + 2 n

]
+ α2

[
n2 + 4 n+ 4− 3 n2 − 6 n− 3 + 2 n2

]
= 4n − n2

After doing simple algebraic calculations, we get

6 α1 4n − 2 α2 n+ α2 − α3 = 4n − n2

implies that

α1 =
1

6

α2 = 0

α3 = 0

So the particular solution is

xp(n) =
1

6
4n + α4

Thus the general solution of the difference equation is:

xg(n) = (a+ α4) + b 2n +
1

6
4n
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xg(n) = A+ b 2n +
1

6
4n

where A = a+ α4.

The values of A and b can be founded by using the initial conditions x0 and

x1 of the general solution.

2.2 Limiting Behavior of the Solutions

To simplify our exposition we restrict our discussion to the second

order difference equation

y(n+ 2) + p1 y(n+ 1) + p2 y(n) = 0 (2.2.1)

Suppose that λ1 and λ2 are the characteristic roots of the equation. Then

we have the following three cases[10]:

Case 1: Suppose that λ1 and λ2 are distinct real roots. Then y1(n) = λn1

and y2(n) = λn2 are two linearly independent solutions of equation

(2.2.1). If |λ1| > |λ2|, then we call y1(n) the dominant solution, and

λ1 the dominant characteristic root.

We will now show that the limiting behavior of the general solution

y(n) = a1 λ
n
1 + a2 λ

n
2

is determined by the behavior of the dominant solution. So assume,

without loss of generality, that |λ1| > |λ2|. Then

y(n) = λn1

(
a1 + a2

(
λ2

λ1

)n)
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Since

∣∣∣∣λ2

λ1

∣∣∣∣ < 1 it follows that

(
λ2

λ1

)n
→ 0 as n→∞

Consequently, lim
n→∞

y(n) = lim
n→∞

a1 λ
n
1

There are six different situations that may arise here depending on

the value of λ1

1. λ1 > 1 : The sequence {a1 λ
n
1} → ∞ (unstable system).

2. λ1 = 1 : The sequence {a1 λ
n
1} is a constant sequence.

3. 0 < λ1 < 1 : The sequence {a1 λ
n
1} is monotonically decreasing

to zero (stable system).

4. −1 < λ1 < 0 : The sequence {a1 λ
n
1} is oscillating around zero

(i.e., alternating in sign) and converging to zero (stable system).

5. λ1 = −1 : The sequence {a1 λ
n
1} is oscillating between two values

a1 and −a1.

6. λ1 < −1 : The sequence {a1 λ
n
1} is oscillating but increasing in

magnitude (unstable system).

Example 2.5. Find the general solution of

x(n+ 2) +
1

2
x(n+ 1)− 1

2
x(n) = 0

and determine the limiting behavior of the solution

Solution. To find the general solution, we solve the characteristic

equation

λ2 +
1

2
λ− 1

2
= 0

⇒ (λ+ 1)(λ− 1

2
) = 0
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implies that λ1 = −1 and λ2 =
1

2
So the general solution is

x(n) = a1 λ
n
1 + a2 nλ

n
2 = a1 (−1)n + a2

(
1

2

)n
.

We have |λ1| > |λ2| and λ1 = −1, so by applying the fifth item

above, the sequence {a1 (−1)n} oscillates between the values a1 and

a2.

Case 2: λ1 = λ2 = λ

The general solution of (2.2.1) is given by y(n) = (a1 + a2 n)λn.

Clearly, if |λ| > 1, the solution y(n) diverges either monotonically

if λ > 1 or by oscillating if λ 6 −1. However, if |λ| < 1, then the

solution converges to zero, since lim
n→∞

nλn = 0.

Example 2.6. Let us check the solution of the equation in example

(2.3)

x(n+ 2)− x(n+ 1) +
1

4
x(n) = 0

In this case λ1 = λ2 =
−1

2
and the solution was

x(n) = a1 λ
n + a2 nλ

n =

(
−1

2

)n
(a1 + a2 n)

We find that the solution converges to zero, since |λ| =

∣∣∣∣−1

2

∣∣∣∣ < 1

and lim
n→∞

n

(
−1

2

)n
= 0.

Case 3: The last case when the roots λ1 and λ2 are complex roots. Set

λ1 = a+ ib and λ2 = a− ib. The general solution will be

y(n) = α rn cos(nθ − ω)
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where r =
√
a2 + b2 and θ = tan−1( b

a
).

The solution y(n) clearly oscillates, since the cosine function oscil-

lates. However, y(n) oscillates in three different ways depending on

the location of the conjugate characteristic roots:

(a) r > 1: Here λ1 and λ2 = λ1 are outside the unit circle. Hence

y(n) is oscillating but increasing in magnitude (unstable sys-

tem).

(b) r = 1: Here λ1 and λ2 = λ1 lie on the unit circle. In this case

y(n) is oscillating but constant in magnitude.

(c) r < 1: Here λ1 and λ2 = λ1 lie inside the unit disk. The

solution y(n) oscillates but converges to zero as n→∞ (stable

system).

Example 2.7. Consider the difference equation

x(n+ 2) + x(n+ 1) + x(n) = 0

The characteristic equation is

λ2 + λ+ 1 = 0

implies that λ1 = 1 − i and λ2 = 1 + i, then the general solution

will be

x(n) = α
(√

2
)n

cos(nθ − ω)

Since r =
√

2 > 1, the solution x(n) is oscillating and increasing,

so it is unstable.

The above discussion can be summarized in the following theorem.
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Theorem 2.8. [10] The following statements hold:

(i) All solutions of equation (2.2.1) oscillate about zero if and only if the

characteristic equation has no positive real roots.

(ii) All solutions of equation (2.2.1) converge to zero (i.e., the zero solution

is asymptotically stable) if and only if max {|λ1|, |λ2|} < 1.

Now, consider nonhomogeneous difference equations in which the in-

put is constant, that is, equations of the form

y(n+ 2) + p1 y(n+ 1) + p2 y(n) = M (2.2.2)

where M is a nonzero constant. Let the equilibrium point or solution be y∗,

we have

y∗ + p1 y
∗ + p2 y

∗ = M,

which implies

y∗ =
M

1 + p1 + p2

Since yp(n) = y∗ is a particular solution of equation (2.2.2), then the general

solution is given by

y(n) = yp(n) + yc(n)

And if we take yp(n) = y∗, this concludes to the following theorem.

Theorem 2.9. [10] The following statements hold:

(i) All solutions of the nonhomogeneous equation (2.2.2) oscillate about the

equilibrium solution y∗ if and only if none of the characteristic roots of

the homogeneous equation (2.2.1) is a positive real number.



2.2 Limiting Behavior of the Solutions 26

(ii) All solutions of equation (2.2.2) converge to y∗ as n → ∞ if and only

if max {|λ1|, |λ2|} < 1, where λ1 and λ2 are the characteristic roots of

the homogeneous equation (2.2.1).

The following theorem provides us with the explicit criteria for stabil-

ity based on the values of the coefficients p1 and p2 of the difference equa-

tions (2.2.1) or (2.2.2).

Theorem 2.10. [10] The conditions

1 + p1 + p2 > 0, 1− p1 + p2 > 0, 1− p2 > 0

are necessary and sufficient conditions for the equilibrium points (solution)

of equations (2.2.1) and (2.2.2) to be asymptotically stable.

If we consider the above conditions,

1 + p1 + p2 > 0⇒ 1 + p2 > −p1

and

1− p1 + p2 > 0⇒ 1 + p2 > p1

implies that

1 + p2 > |p1|

Also

1− p2 > 0⇒ 1 > p2

by adding one for both sides, we get

2 > 1 + p2
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This discussion implies that the conditions in theorem (2.10) can be

written under the following compact form

|p1| < 1 + p2 < 2.



CHAPTER 3

Dynamics of

xn+1 =
βxn+γxn−k

A+Bxn+Cxn−k

In this chapter we consider the main issue of this thesis, that is study-

ing and investigating the difference equation

xn+1 =
βxn + γxn−k

A+Bxn + Cxn−k
, n = 0, 1, 2, . . . (3.0.1)

where the parameters β, γ, A, B and C are non-negative real numbers with at

least one parameter is non zero and the initial conditions x−k, x−k+1, . . . , x0

are non-negative real numbers for which the solution is defined and k ∈

{1, 2, . . .}.

My concentration is on boundedness, invariant intervals, periodic char-

acter, the character of semi-cycles and global asymptotic stability of zero and

positive solutions of equation (3.0.1).

28
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It is a good idea to overview the difference equation

xn+1 =
βxn + γxn−1

A+Bxn + Cxn−1

, n = 0, 1, 2, . . . (3.0.2)

where the parameters β, γ, A, B and C are non-negative real numbers and

the initial conditions x−1, x0 are non-negative real numbers.

This will help us to study and analyze equation (3.0.1) more theoretically.

The characteristics of equation (3.0.2) has been investigated by Lin-Xia Hu

et al. in [13]. They showed, the global stability of the zero and positive

equilibrium points, invariant intervals and semi-cycle analysis. In addition,

M. Kulenović and G. Ladas considered equation (3.0.2) in their monograph

in [16].

The dynamical characteristics and the behavior of positive solutions

of some higher order nonlinear difference equations have been investigated

by many researchers.

DeVault et al. investigated in [6] the global stability and the periodic

character of solutions of the difference equation

yn+1 =
p+ yn−k
qyn + yn−k

, n = 0, 1, 2, . . .

where the parameters p and q are positive real numbers and the initial condi-

tions y−k, . . . , y−1, y0 are arbitrary non-negative real numbers, k ∈ {1, 2, . . .}.

Li and Sun in [18] and A. Farhat in [11] studied independently the

dynamical characteristics, such as the global asymptotic stability, the invari-

ant interval, the periodic and oscillatory characters of all positive solutions

of the difference equation

xn+1 =
pxn + xn−k
q + xn−k

, n = 0, 1, 2, . . .
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where the parameters p and q are non-negative real numbers and the initial

conditions x−k, . . . , x−1, x0 are non-negative real numbers, k ∈ {1, 2, . . .}.

In [8], M.M. El-Afifi investigated the local and globally asymptotically

stability and the semi-cycles of the difference equation

xn+1 =
α + βxn + γxn−1

Bxn + Cxn−1

, n = 0, 1, 2, . . .

where the parameters α, β, γ, B and C are non-negative real numbers with

at least one parameter is non zero and the initial conditions x−1, x0 are

non-negative real numbers.

A. Farhat studied the general case of the last equation in [11] and

investigated the periodic character of the positive solution, the invariant in-

tervals, the oscillation and the global stability of all solutions of the difference

equation

xn+1 =
α + βxn + γxn−k
Bxn + Cxn−k

, n = 0, 1, 2, . . .

where the parameters α, β, γ, B and C are non-negative real numbers with

at least one parameter is non zero and the initial conditions x−k, . . . , x−1, x0

are non-negative real numbers, k ∈ {1, 2, . . .}.

In [19] Sebdani and Dehghan investigated characteristics such as pe-

riodicity, invariant interval, the character of semicycles, the global stability,

and the boundedness of positive solutions of the difference equation

yn+1 =
yn + pyn−k
q + yn

, n = 0, 1, 2, . . .

where the parameters p and q are non-negative real numbers and the initial

conditions y−k, . . . , y−1, y0 are non-negative real numbers, k ∈ {1, 2, . . .}.
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M. Saleh and S. Abu-Baha investigated in [20] the difference equation

xn+1 =
βxn + γxn−k
Bxn + Cxn−k

, n = 0, 1, 2, . . .

where the parameters β, γ, B and C are non-negative real numbers and the

initial conditions x0, x1, . . . , xk are non-negative real numbers with the solu-

tion is defined and k ∈ {1, 2, 3, . . .}.

Their concentration was on invariant intervals, periodic character, the char-

acter of semicycles and global asymptotic stability of all positive solutions of

the equation.

Also, Lin-Xia Hu et al. investigated in [14] the boundedness, invari-

ant interval, semicycle and global attractivity of all positive solutions of the

difference equation

xn+1 =
α + γxn−1

A+Bxn + Cxn−1

, n = 0, 1, 2, . . .

where the parameters α, γ, A,B,C ∈ (0,∞) and the initial conditions x−1, x0

are non-negative real numbers.

3.1 Changing the Variables

Before investigating the characteristics of equation (3.0.1), it is more

convenient to reduce the number of parameters by a change of variables.

To change the variables of equation (3.0.1), assume that xn =
γ

C
yn,

and substitute it in the equation as the following:

γ

C
yn+1 =

β
γ

C
yn +

γ2

C
yn−k

A+B
γ

C
yn + C

γ

C
yn−k
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tacking a common factor
γ2

C
in the numerator and γ in the denominator,

γ

C
yn+1 =

γ2

C

[
β

γ
yn + yn−k

]
γ

[
A

γ
+
B

C
yn + yn−k

]
then

γ

C
yn+1 =

γ

[
β

γ
yn + yn−k

]
C

[
A

γ
+
B

C
yn + yn−k

]
which implies

yn+1 =

β

γ
yn + yn−k

A

γ
+
B

C
yn + yn−k

by assuming p =
β

γ
, q =

B

C
and r =

A

γ
, we get the following equation:

yn+1 =
pyn + yn−k

r + qyn + yn−k
, n = 0, 1, . . . (3.1.1)

3.2 Equilibrium Points

In this section we investigate the equilibrium points of the nonlinear

rational difference equation

yn+1 =
pyn + yn−k

r + qyn + yn−k
, n = 0, 1, . . . (3.2.1)

where the parameters p, q, r and the initial conditions y−k, . . . , y−1, y0 are

positive real numbers, k = 1, 2, . . ..
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Definition 3.1. The equilibrium point ȳ of the equation

yn+1 = f(yn, yn−1, . . . , yn−k), n = 0, 1, . . .

is the point that satisfies the condition

ȳ = f(ȳ, ȳ, . . . , ȳ).

To find the equilibrium points of equation (3.2.1) using the definition,

let f(ȳ, ȳ) = ȳ, then we solve the following equation

ȳ =
pȳ + ȳ

r + qȳ + ȳ

Cross multiplication, implies

ȳr + (q + 1)ȳ2 = (p+ 1)ȳ

Rearranging the terms, we get

(r − p− 1)ȳ + (q + 1)ȳ2 = 0

Then,

ȳ
[
(r − p− 1) + (q + 1)ȳ

]
= 0

hence, the equilibrium points of equation (3.2.1) are

ȳ = 0

and

ȳ =
p+ 1− r
q + 1

where p+ 1 > r.
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3.3 Linearization of the Difference Equation

Consider the kth-order difference equation of the form

xn+1 = f(xn, xn−1, . . . , xn−k), n = 0, 1, . . . (3.3.1)

Assume that f is continuously differentiable in some neighborhood around

x̄, then we can linearize equation (3.3.1) around x̄. Thus, by chain rule, the

linearized equation around x̄ becomes

zn+1 =
k∑
i=0

∂f

∂ui
(x̄, . . . , x̄)zn−i

The characteristic equation is given by

λn+1 =
k∑
i=0

∂f

∂ui
(x̄, . . . , x̄)λn−i

or

λk+1 − ∂f

∂u0

λk − ∂f

∂u1

λk−1 − · · · − ∂f

∂uk
= 0

To find the linearization of our equation (3.2.1) about the equilibrium

point, consider

f(u, v) =
pu+ v

r + qu+ v

Thus

fu(u, v) =
p(r + qu+ v)− q(pu+ v)

(r + qu+ v)2

=
pr + pqu+ pv − pqu− qv

(r + qu+ v)2

=
pr + (p− q)v
(r + qu+ v)2
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Which implies

fu(ȳ, ȳ) =
pr + (p− q)ȳ
(r + qȳ + ȳ)2

=
pr + (p− q)ȳ

(r + (q + 1)ȳ)2

In the same way

fv(u, v) =
(r + qu+ v)− (pu+ v)

(r + qu+ v)2

=
r + (q − p)u
(r + qu+ v)2

Substituting ȳ implies

fv(ȳ, ȳ) =
r + (q − p)ȳ
(r + qȳ + ȳ)2

=
r + (q − p)ȳ

(r + (q + 1)ȳ)2

The linearized equation is

zn+1 = fu(ȳ, ȳ) zn + fv(ȳ, ȳ) zn−k

zn+1 =
pr + (p− q)ȳ

(r + (q + 1)ȳ)2
zn +

r + (q − p)ȳ
(r + (q + 1)ȳ)2

zn−k

i.e.

zn+1 −
pr + (p− q)ȳ

(r + (q + 1)ȳ)2
zn −

r + (q − p)ȳ
(r + (q + 1)ȳ)2

zn−k = 0 (3.3.2)

and the characteristic equation is

λn+1 − pr + (p− q)ȳ
(r + (q + 1)ȳ)2

λn − r + (q − p)ȳ
(r + (q + 1)ȳ)2

λn−k = 0

which implies

λk+1 − pr + (p− q)ȳ
(r + (q + 1)ȳ)2

λk − r + (q − p)ȳ
(r + (q + 1)ȳ)2

= 0 (3.3.3)
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3.4 Local Stability of the Equilibrium Points

Our aim in this section is to investigate the local stability of the zero

and positive equilibrium points of equation (3.2.1) for which we found the

linearized equation in the last section.

First we present some powerful criterion and theorems to study the

local stability of equilibrium points.

Definition 3.2. [19] Let ȳ be an equilibrium point of equation (3.5.1).

(i) The equilibrium point ȳ of equation (3.5.1) is called locally stable

(or stable) if for every ε > 0, there exists δ > 0 such that for all

y−k, . . . , y−1, y0 ∈ I with

0∑
i=−k

|yi − ȳ| < δ,

we have |yn − ȳ| < ε for all n > −k.

(ii) The equilibrium point ȳ of equation (3.5.1) is called locally asymptoti-

cally stable (asymptotic stable) if it is locally stable, and if there exists

γ > 0 such that for all y−k, . . . , y−1, y0 ∈ I with

0∑
i=−k

|yi − ȳ| < γ,

we have lim
n→∞

yn = ȳ.

(iii) The equilibrium point ȳ of equation (3.5.1) is called a global attractor

if for every y−k, . . . , y−1, y0 ∈ I, we have lim
n→∞

yn = ȳ.

(iv) The equilibrium point ȳ of equation (3.5.1) is called globally asymptot-

ically stable if it is locally stable and a global attractor.
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(v) The equilibrium point ȳ of equation (3.5.1) is called unstable if it is not

stable.

(vi) The equilibrium point ȳ of equation (3.5.1) is called a source, or a

repeller, if there exists r > 0 such that for all y−k, . . . , y−1, y0 ∈ I with
0∑

n=−k

|yi − ȳ| < γ, there exists N > 1 such that |yN − ȳ| > r.

Theorem 3.1. [16] Let I be some interval of real numbers and let

f : Ik+1 → I

be a continuously differentiable function. Then for every set of initial condi-

tions x−k, . . . , x1, x0 ∈ I, the difference equation

xn+1 = f(xn, xn−k), n = 0, 1, . . . (3.4.1)

has a unique solution {xn}∞n=−k.

Theorem 3.2. [15] Assume that a, b ∈ R and k ∈ {1, 2, . . .}. Then

|a|+ |b| < 1 (3.4.2)

is a sufficient condition for the asymptotic stability of the difference equation

yn+1 − ayn + byn−k = 0, n = 0, 1, . . . (3.4.3)

Suppose in addition that one of the following two cases holds:

(a) k odd and b < 0.

(b) k even and ab < 0.

Then (3.4.2) is also a necessary condition for the asymptotic stability of

equation (3.4.3).
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Theorem 3.3. [15] Assume that a, b ∈ R and k ∈ {1, 2, . . .}. Then

|a| < 1− b < 2

is a necessary and sufficient condition for the asymptotic stability of the dif-

ference equation

yn+1 − ayn − byn−k = 0, n = 0, 1, . . . (3.4.4)

Theorem 3.4. [16] Assume that all the roots of the characteristic equation

of the above equation (3.4.4 ) lie inside the unit circle, then the equilibrium

point is locally asymptotically stable.

3.4.1 Local Stability of the Zero Equilibrium Point

To investigate the local stability of the zero equilibrium point, let us

find the linearized equation about the zero equilibrium point associated with

equation (3.2.1).

By substituting ȳ = 0 in the linearized equation (3.3.2), we find the

linearized equation associated with equation (3.2.1) about ȳ = 0,

zn+1 −
p

r
zn −

1

r
zn−k = 0 (3.4.5)

Now, let us apply theorem (3.3) to the above equation (3.4.5), so we have

part (I)︷ ︸︸ ︷∣∣∣p
r

∣∣∣ < 1− 1

r
< 2︸ ︷︷ ︸

part (II)

(3.4.6)
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It is clear that
p

r
is positive since p and r are nonnegative, so

p

r
< 1− 1

r

implies

p < r − 1

i.e.

p+ 1 < r.

Now, the right hand inequality in (3.4.6),

1− 1

r
< 2

then

r − 1

r
< 2

implies

−1 < r

which is true for all nonnegative values of r.

The above discussion yields the following theorem.

Theorem 3.5. The zero equilibrium point of equation (3.2.1) is locally

asymptotically stable under the condition p+1 < r, otherwise it is unstable.

3.4.2 Local Stability of the Positive Equilibrium Point

In this subsection we prove the local stability of the positive equilib-

rium point under some conditions.
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Theorem 3.6. The positive equilibrium point ȳ = p+1−r
q+1

of equation (3.2.1)

is locally asymptotically stable for all values of the parameters p, q and r

provided that all roots of equation (3.3.3) lie inside the unit circle.

Theorem 3.7. Assume that p + 1 > r, then the positive equilibrium point

ȳ = p+1−r
q+1

of equation (3.2.1) is locally asymptotically stable when

q + r < 3p+ 1 + qr + pq (3.4.7)

Proof. First substitute ȳ = p+1−r
q+1

in the linearized equation (3.3.2) to get the

linearized equation about ȳ = p+1−r
q+1

,

zn+1 −
pr + (p− q)p+1−r

q+1(
r + (q + 1)p+1−r

q+1

)2 zn −
r + (q − p)p+1−r

q+1(
r + (q + 1)p+1−r

q+1

)2 zn−k = 0

simplifying the above equation by MATLAB program1, we get

zn+1 −
p− q + qr

qp+ q + p+ 1
zn −

−p+ q + r

qp+ q + p+ 1
zn−k = 0 (3.4.8)

By applying theorem (3.3) on the linearized equation (3.4.8), we have

a =
p− q + qr

qp+ q + p+ 1

and

b =
−p+ q + r

qp+ q + p+ 1

Now we need to verify the inequality

first side︷ ︸︸ ︷∣∣∣∣ p− q + qr

qp+ q + p+ 1

∣∣∣∣ < 1− −p+ q + r

qp+ q + p+ 1
< 2︸ ︷︷ ︸

second side

(3.4.9)

1see the code of simplifying the linearized equation in the Appendix A.2
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First, assume that the left of the first side is positive, then

p− q + qr

qp+ q + p+ 1
< 1− −p+ q + r

qp+ q + p+ 1

=⇒ p− q + qr

qp+ q + p+ 1
<
qp+ 2p+ 1− r
qp+ q + p+ 1

i.e.

p− q + qr < qp+ 2p+ 1− r

implies

r < p+ 1

which is the assumption.

Now, assume that the left of the first side of inequality (3.4.9) is neg-

ative, then

− p− q + qr

qp+ q + p+ 1
<
qp+ 2p+ 1− r
qp+ q + p+ 1

i.e.

−p+ q − qr < qp+ 2p+ 1− r

=⇒ q + r < 3p+ 1 + qr + pq

as needed.

The second side of the inequality

1− −p+ q + r

qp+ q + p+ 1
< 2

then

qp+ 2p+ 1− r
qp+ q + p+ 1

< 2

i.e.

qp+ 2p+ 1− r < 2qp+ 2q + 2p+ 2
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implies

0 < qp+ 2q + 1 + r

which is true for all positive values of p, q and r.

The proof is complete.

3.5 Boundedness

In this section we give the boundedness of solutions of the difference

equation (3.0.1). In the beginning we present the following definition.

Definition 3.3. We say that a solution xn of a difference equation

xn+1 = f(xn, xn−1, . . . , xn−k), n = 0, 1, . . . (3.5.1)

is bounded and persists if there exist positive constants P and Q such that

P 6 xn 6 Q for n = −k,−k + 1, . . .

Theorem 3.8. Assume that B and C are greater than zero, then every non-

negative solution of equation (3.0.1) is bounded from above by a positive con-

stant.

Proof. Firt case, assume A = 0, then by using equation (3.0.1), we can write

the following:

xn+1 =
βxn + γxn−k
Bxn + Cxn−k

6
max (β, γ)(xn + xn−k)

min (B,C)(xn + xn−k)

=
max (β, γ)

min (B,C)
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The second case, assume A > 0, then

xn+1 =
βxn + γxn−k

A+Bxn + Cxn−k

6
max (β, γ) + βxn + γxn−k

A+Bxn + Cxn−k

6
max (β, γ)(1 + xn + xn−k)

min (A,B,C)(1 + xn + xn−k)

=
max (β, γ)

min (A,B,C)

The proof is complete.

3.6 Invariant Intervals

Here we investigate the invariant intervals of equation (3.2.1), and the

following definition will be a key concept in the monograph.

Definition 3.4 (Invariant Interval). An Invariant Interval of the difference

equation (3.5.1) is an interval with the property that if k + 1 consecutive

terms of the solution fall in I then all subsequent terms of the solution

also belong to I. In other words, I is an invariant interval for (3.5.1) if

xN−k+1, . . . , xN−1, xN ∈ I for some N > 0, then xn ∈ I for every n > N .

Assume that {yn}∞n=−k is a nonnegative solution of equation (3.2.1),

then the following identities are easily established:

yn+1 − 1 = (p− q)
yn − r

p−q

r + qyn + yn−k
, n ∈ N0, (3.6.1)

yn+1 −
p

q
=
q − p
q

yn−k − pr
q−p

r + qyn + yn−k
, n ∈ N0 (3.6.2)
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If p = q then the numerator in (3.6.1) can be written in the following form

(p− q) yn − r = −r.

Thus if p + 1 > r and p = q, the unique equilibrium is ȳ = p+1−r
p+1

and the

following identities hold:

yn+1 − 1 =
−r

r + p yn + yn−k
, n ∈ N0, (3.6.3)

yn+1 − ȳ =
r

p+ 1

p (yn − ȳ) + (yn−k − ȳ)

r + p yn + yn−k
, n ∈ N0 (3.6.4)

When p = q+r, the unique equilibrium is ȳ = 1 and identity (3.6.1) becomes

yn+1 − 1 =
r (yn − 1)

r + q yn + yn−k
, n ∈ N0, (3.6.5)

And when q = p + qr, the unique equilibrium is ȳ = p
q

and identity (3.6.2)

becomes

yn+1 −
p

q
=

r
(
yn−k − p

q

)
r + q yn + yn−k

, n ∈ N0 (3.6.6)

Theorem 3.9. [13] Assume that f(x, y) is defined as

f(x, y) =
p x+ y

r + q x+ y
(3.6.7)

Then the following statements hold true:

(i) f(x, x) is strictly increasing in x in [0,∞).

(ii) Assume p = q, then f(x, y) is strictly increasing in each of its argu-

ments.

(iii) Assume p > q, then f(x, y) is strictly increasing in each of its argu-

ments for x < r
p−q and it is strictly increasing in x and decreasing in

y for x > r
p−q .
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(iv) Assume p < q, then f(x, y) is strictly increasing in each of its argu-

ments for y < pr
q−p and it is strictly increasing in y and decreasing in

x for y > pr
q−p .

Proof. (i) Note that f(x, x) =
(p+ 1)x

r + (q + 1)x
is strictly increasing function

in the interval [0,∞), since the derivative of f

f ′(x, x) =
r(p+ 1)

(r + (q + 1)x)2

is always positive for x > 0.

(ii)-(iv) By calculating the partial derivatives of the function f(x, y),

we have that

fx(x, y) =
pr − (q − p)y
(r + qx+ y)2

and fy(x, y) =
r − (p− q)x
(r + qx+ y)2

,

from which these statements easily follow.

Theorem 3.10. Assume that p > q, p + 1 > r, and that {yn}∞n=−k is a

nonnegative solution of equation (3.2.1). Then the following statements are

true:

(i) yn 6 p
q

for all n ∈ N.

(ii) If p > q+ r and for some N > 0, yN > r
p−q , then yn > 1 for all n > N .

(iii) If p = q + r and for some N > 0, yN = 1, then yn = 1 for all n > N .

(iv) If p 6 q+ r and for some N > 0, yN < r
p−q , then yn < 1 for all n > N .
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(v) If p 6 q+ qr
p

, then equation (3.2.1) possesses an invariant interval [0, p
q
]

and ȳ ∈ [0, p
q
], moreover, the interval [0, 1] is also an invariant interval

for equation (3.2.1) and ȳ ∈ (0, 1).

(vi) If q + qr
p
< p < q + r, then equation (3.2.1) possesses an invariant

interval [0, r
p−q ] and ȳ ∈ [0, r

p−q ], moreover, the interval [0, 1] is also an

invariant interval for equation (3.2.1) and ȳ ∈ (0, 1).

(vii) If p > q+r, then equation (3.2.1) possesses an invariant interval [ r
p−q ,

p
q
]

and ȳ ∈ [ r
p−q ,

p
q
], moreover, the interval [0, p

q
] is also an invariant inter-

val for equation (3.2.1) and ȳ ∈ (0, p
q
).

Proof. (i) By writing the identity (3.6.2) in the form

yn+1 −
p

q
=
q − p
q

yn−k + pr
p−q

r + qyn + yn−k
, n ∈ N0

and since p > q, implies that

yn+1 −
p

q
6 0

which implies yn+1 6
p

q
for all n ∈ N.

(ii) Since p > q+ r, implies that r
p−q 6 1. By using the identity (3.6.1)

yN+1 − 1 = (p− q)
yN − r

p−q

r + qyN + yN−k
,

and the assumption p > q, then the right side of this identity is greater

than zero, implies yN+1 > 1.

For the next term yN+2

yN+2 − 1 = (p− q)
yN+1 − r

p−q

r + qyN+1 + yN−k+1

,
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then the right side of the identity greater than zero since yN+1 > 1 >

r
p−q , implies yN+2 > 1. By induction yn > 1 for all n > N .

(iii) Since p = q + r, this implies that r
p−q = 1. By using the identity

(3.6.1)

yN+1 − 1 = (p− q)
yN − r

p−q

r + qyN + yN−k
,

and the assumption yN = r
p−q , then the right side of the identity equal

zero, implies yN+1 = 1.

For the next term yN+2

yN+2 − 1 = (p− q)
yN+1 − r

p−q

r + qyN+1 + yN−k+1

,

then the right side of the identity equal zero since yN+1 = r
p−q = 1,

implies yN+2 = 1. By induction yn = 1 for all n > N .

(iv) Since p 6 q+ r, implies that r
p−q > 1. By using the identity (3.6.1)

yN+1 − 1 = (p− q)
yN − r

p−q

r + qyN + yN−k
,

and the assumption p > q, then the right side of the identity less than

zero, implies yN+1 < 1.

For the next term yN+2

yN+2 − 1 = (p− q)
yN+1 − r

p−q

r + qyN+1 + yN−k+1

,

then the right side of the identity less than zero since yN+1 < 1 6 r
p−q ,

implies yN+2 < 1. By induction yn < 1 for all n > N .

(v) Since q < p 6 q + qr
p

, from the left side 1 < p
q
, and from the right

side p− q 6 qr
p

implies p−q
r

6 q
p
. Then we have that 1 < p

q
6 r

p−q .



3.6 Invariant Intervals 48

Since f(x, y) =
px+ y

r + qx+ y
is nondecreasing in x and y for each x, y ∈

(0, p
q
], then

y1 = f(y0, y−k) 6 f

(
r

p− q
,

r

p− q

)
= 1,

which implies that y1 ∈ [0, 1] ⊂ [0, p
q
], and

y2 = f(y1, y−k+1) 6 f

(
1,

r

p− q

)
6 f

(
r

p− q
,

r

p− q

)
= 1,

By the induction we have that yn ∈ [0, 1] ⊂ [0, p
q
] for every n ∈ N.

On the other hand, the condition 1 < r
p−q is equivalent to p+1−r

q+1
< 1,

that is ȳ < 1 from which it follows that ȳ ∈ (0, 1).

(vi) Similar to the above, since q+ qr
p
< p < q+r, implies qr

p
< p−q < r,

then q
p
< p−q

r
< 1, then we have 1 < r

p−q <
p
q
.

And the function f(x, y) in nondecreasing in x and y for each x, y ∈

(0, r
p−q ], which implies that

y1 = f(y0, y−k) 6 f

(
r

p− q
,

r

p− q

)
= 1,

which implies that y1 ∈ [0, 1] ⊂ [0, r
p−q ], and

y2 = f(y1, y−k+1) 6 f

(
1,

r

p− q

)
6 f

(
r

p− q
,

r

p− q

)
= 1,

which implies that y2 ∈ [0, 1] ⊂ [0, r
p−q ]. By the induction we have that

yn ∈ [0, 1] ⊂ [0, r
p−q ] for every n ∈ N.

Now note that the condition p < q + r implies that

p+ 1− r
q + 1

<
q + r + 1− r

q + 1
= 1,

which means that ȳ ∈ (0, 1), as desired.
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(vii) It is easy to see that the function f(x, y) is strictly increasing in x

for each fixed y ∈ (0,∞), and nonincreasing in y for each fixed x > r
p−q .

From this and (i), we have

1 = f

(
r

p− q
,
p

q

)
6 y1 = f(y0, y−k) 6

p

q
.

Since p > q + r, implies r
p−q < 1 and since p > q ⇒ 1 < p

q
. So we have

that r
p−q < 1 < p

q
. From this, we have that y1 ∈ [1, p

q
] ⊂ [ r

p−q ,
p
q
]. By

the induction it follows that yn ∈ [1, p
q
] ⊂ [ r

p−q ,
p
q
], for every n ∈ N.

Further, we have that p > q + r implies that

ȳ =
p+ 1− r
q + 1

>
q + r + 1− r

q + 1
= 1,

as well as
p+ 1− r
q + 1

<
p

q
, which means that ȳ ∈ (1, p

q
), as desired.

Theorem 3.11. Assume that p = q + r, p + 1 > r, and that {yn}∞n=−k is a

nonnegative solution of equation (3.2.1). Then the following statements are

true:

(i) yn 6 p
q

for all n ∈ N.

(ii) If for some N > 0, yN > 1, then yn > 1 for all n > N .

(iii) If for some N > 0, yN < 1, then yn < 1 for all n > N .

Proof. By using theorem (3.10), the proof is direct consequence of the as-

sumptions and identity (3.6.5).
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Theorem 3.12. Assume that q > p, p + 1 > r, and that {yn}∞n=−k is a

nonnegative solution of equation (3.2.1). Then the following statements are

true:

(i) yn 6 1 for all n ∈ N.

(ii) If for some N > 0, yN > pr
q−p , then yN+k+1 >

p
q
.

(iii) If for some N > 0, yN = pr
q−p , then yN+k+1 = p

q
.

(iv) If for some N > 0, yN < pr
q−p , then yN+k+1 <

p
q
.

(v) If q 6 p+pr, then equation (3.2.1) possesses an invariant interval [0, 1]

and ȳ ∈ [0, 1], moreover, the interval [0, p
q
] is also an invariant interval

for equation (3.2.1) and ȳ ∈ (0, p
q
).

(vi) If p + pr < q < p + qr, then equation (3.2.1) possesses an invariant

interval [0, pr
q−p ] and ȳ ∈ [0, pr

q−p ], moreover, the interval [0, p
q
] is also an

invariant interval for equation (3.2.1) and ȳ ∈ (0, p
q
).

(vii) If q > p + qr, then equation (3.2.1) possesses an invariant interval

[ pr
q−p , 1] and ȳ ∈ [ pr

q−p , 1], moreover, the interval [p
q
, 1] is also an invariant

interval for equation (3.2.1) and ȳ ∈ (p
q
, 1).

Proof. (i) If we write identity (3.6.1) in the form

yn+1 − 1 = (p− q)
yn + r

q−p

r + qyn + yn−k
, n ∈ N0,

and use the assumption q > p, then the right side of the above identity

is less than zero, which means yn+1 − 1 6 0⇒ yn+1 6 1.
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(ii) By using the identity (3.6.2)

yn+k+1 −
p

q
=
q − p
q

yn − pr
q−p

r + qyn+k + yn
, n ∈ N0

and the assumptions yN > pr
q−p and q > p, implies that the right side of

the identity is greater than zero, which implies that yN+k+1 >
p
q
.

(iii) As in (ii), by using the identity (3.6.2) and the assumptions yN = pr
q−p

and q > p, implies that the right side of the identity is zero, which

implies that yN+k+1 = p
q
.

(iv) Similarly, by identity (3.6.2) and the assumptions yN < pr
q−p and q > p,

implies that the right side of the identity is less that zero, which implies

that yN+k+1 <
p
q
.

(v) Since p < q 6 p + pr, from left side p
q
< 1 and from right side q − p 6

pr ⇒ 1 6 pr
q−p , so we have that p

q
< 1 6 pr

q−p . By theorem (3.9) (iv) the

function f(x, y) is strictly increasing in y for each fixed x ∈ (0,∞), and

nondecreasing in x for each fixed y ∈ (0, 1], we have that

y1 = f(y0, y−k) 6 f

(
pr

q − p
,
pr

q − p

)
=
p

q
< 1,

which implies that y1 ∈ [0, p
q
] ⊂ [0, 1].

By the induction yn ∈ [0, p
q
] ⊂ [0, 1] for every n ∈ N.

On the other hand, we have that

ȳ =
p+ 1− r
q + 1

<
p

q
< 1,

as desired.
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(vi) Since p + pr < q < p + qr, implies pr < q − p < qr then 1 < q−p
pr

< qr
pr

,

so we have that p
q
< pr

q−p < 1. By theorem (3.9) (iv) as above, we have

that

y1 = f(y0, y−k) 6 f

(
pr

q − p
,
pr

q − p

)
=
p

q
< 1,

which implies that y1 ∈ [0, p
q
] ⊂ [0, pr

q−p ].

By the induction yn ∈ [0, p
q
] ⊂ [0, pr

q−p ] for every n ∈ N.

On the other hand, we have that

ȳ =
p+ 1− r
q + 1

<
p

q
<

pr

q − p
,

as desired.

(vii) Since q > p + qr > p, we have that pr
q−p <

p
q
< 1. On the other hand,

by theorem (3.9) (iv) we have that for this case, the function f(x, y) is

strictly increasing in y for each fixed x ∈ (0,∞), and nonincreasing in

x for each fixed y > pr
q−p . From this and (i) it follows that

p

q
= f

(
1,

pr

q − p

)
6 y1 = f(y0, y−k) 6 1,

which implies that y1 ∈ [p
q
, 1] ⊂ [ pr

q−p , 1].

By the induction yn ∈ [p
q
, 1] ⊂ [ pr

q−p , 1] for every n ∈ N.

On the other hand, q > p+ qr implies that

p

q
< ȳ =

p+ 1− r
q + 1

<
p+ 1− r
p+ 1

< 1,

as claimed.

The proof is complete.
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3.7 Existence of Two Cycles

In this section we study the necessary and sufficient conditions of equa-

tion (3.7.1) to have a prime period two solution and we exhibit all prime

period-two solutions of the equation.

First we present the definition of the prime period two solution.

Definition 3.5. We say that a solution {xn}∞n=−k of the difference equation

(3.5.1) is periodic if there exists a positive integer p such that xn+p = xn.

The smallest such positive integer p is called the prime period of the solution

of the difference equation.

We study here the periodic solution of our equation,

xn+1 =
pxn + xn−k

r + qxn + xn−k
, n = 0, 1, 2, . . . (3.7.1)

Lets assume that the two periodic nonnegative solutions of our equa-

tion will be in the form

. . . , φ, ψ, φ, ψ, . . .

• If k is odd then

xn+1 = xn−k

So we get

ψ =
p φ+ ψ

r + q φ+ ψ

φ =
pψ + φ

r + q ψ + φ

This yields

ψ(r + q φ+ ψ) = p φ+ ψ (3.7.2)
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φ(r + q ψ + φ) = pψ + φ (3.7.3)

By subtracting equation (3.7.3) from equation (3.7.2) we get the fol-

lowing

r(ψ − φ) + (ψ2 − φ2) = p(φ− ψ) + (ψ − φ)

⇒ (ψ − φ)(r + p− 1) + (ψ2 − φ2) = 0

implies

(ψ − φ)(r + p− 1 + (ψ + φ)) = 0

Then either ψ = φ or ψ+φ = 1− (r+ p). Then in this case there is no

two periodic nonnegative solution for equation (3.7.1) unless ψ + φ =

1− (r + p).

Lets now take k to be even and see what we will get.

• If k is even then

xn = xn−k

So we get

ψ =
p φ+ φ

r + q φ+ φ

φ =
pψ + ψ

r + q ψ + ψ

This yields

ψ(r + q φ+ φ) = φ(p+ 1) (3.7.4)

φ(r + q ψ + ψ) = ψ(p+ 1) (3.7.5)

By subtracting equation (3.7.5) from the equation (3.7.4) we get the

following

r(ψ − φ) + (ψ − φ)(p+ 1) = 0

(ψ − φ)(r + p+ 1) = 0
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Then either ψ = φ or r+p+1 = 0 which is impossible since r and p are

nonnegative variables. Then in this case, there exists no two periodic

nonnegative solution for our equation (3.7.1).

From the above discussion, we have the following theorem.

Theorem 3.13. There exists no two periodic nonnegative solution for the

difference equation

xn+1 =
pxn + xn−k

r + qxn + xn−k
, n = 0, 1, 2, . . .

unless if k is odd and r + p < 1.

3.8 Semi-cycle Analysis

In this section we will study the semi-cycles behavior of solutions of

equation (3.2.1) relative to the equilibrium point ȳ.

Here we give the definitions for the positive and negative semi-cycle

of the solution of a difference equation, relative to an equilibrium point ȳ.

Definition 3.6. [15] Let {yn}∞n=−k be a nonnegative solution of equation

(3.5.1). A positive semi-cycle of a solution {yn}∞n=−k of equation (3.5.1) con-

sists of a “string” of terms {yl, yl+1, . . . , ym}, all greater than or equal to the

equilibrium ȳ, with l > −k and m 6∞ and such that

either l = −k, or l > −k and yl−1 < ȳ

and

either m =∞, or m <∞ and ym+1 < ȳ.
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Definition 3.7. [15] Let {yn}∞n=−k be a nonnegative solution of equation

(3.5.1). A negative semi-cycle of a solution {yn}∞n=−k of equation (3.5.1)

consists of a “string” of terms {yl, yl+1, . . . , ym}, all less than the equilibrium

ȳ, with l > −k and m 6∞ and such that

either l = −k, or l > −k and yl−1 > ȳ

and

either m =∞, or m <∞ and ym+1 > ȳ.

Definition 3.8. A solution {yn} of equation (3.5.1) is called non-oscillatory

if there exists N > −k such that yn > ȳ for all n > N or yn < ȳ for all

n > N .

And a solution {yn} is called oscillatory if it is not non-oscillatory.

Theorem 3.14. [16] Assume that f ∈ C[(0,∞) × (0,∞), (0,∞)] is such

that f(x, y) is increasing in both arguments. Let x̄ be a positive equilibrium

of equation (3.5.1). Then, every oscillatory solution of equation (3.5.1) has

semicycles of length k.

Proof. When k = 1, the proof is presented as theorem (1.7.3) in [16]. We

just give the proof of the theorem for k = 2, the other cases for k > 3 are

similar and we omit them.

Assume that {xn} is an oscillatory solution with three consecutive terms

xN−1 > x̄ , xN > x̄ and xN+1 > x̄

with at least one of the inequalities being strict. The proof in the case of

negative semicycle is similar and is omitted. Then by using the increasing
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character of f(x, y) we obtain:

xN+2 = f(xN+1, xN−1) > f(x̄, x̄) = x̄

which shows that the next term xN+2 also belongs to the positive semicycle.

It follows by induction that all future terms of this solution belong to this

positive semicycle, which is a contradiction. The proof is complete.

Theorem 3.15. [16] Assume that f ∈ C[(0,∞) × (0,∞), (0,∞)] is such

that f(x, y) is increasing in x for each fixed y, and is decreasing in y for

each fixed x. Let x̄ be a positive equilibrium of equation (3.5.1). Then,

except possibly for the first semicycle, every solution of equation (3.5.1) has

semicycles of length at least k + 1.

Proof. When k = 1, the proof is presented as theorem (1.7.4) in Ref.[16]. We

just give the proof of the theorem for k = 2, the other cases for k > 3 are

similar and can be omitted.

Assume that {xn} is an oscillatory solution with three consecutive terms

xN−1, xN , xN+1

such that

xN−1 < x̄ < xN+1

or

xN−1 > x̄ > xN+1

We will assume that

xN−1 < x̄ < xN+1
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the other case is similar and will be omitted.

Then by using decreasing character of f we obtain

xN+2 = f(xN+1, xN−1) > f(x̄, x̄) = x̄

Now, if xN > x̄ then the result follows. Otherwise xN < x̄. Hence

xN+3 = f(xN+2, xN) > f(x̄, x̄) = x̄

which shows that it has at least three terms in the positive semicycle.

Theorem 3.16. [16] Assume that f ∈ C[(0,∞)×(0,∞), (0,∞)] is such that

f(x, y) is decreasing in x for each fixed y, and is increasing in y for each fixed

x. Let x̄ be a positive equilibrium of equation (3.5.1). Then, except possibly

for the first semicycle, every solution of equation (3.5.1) has semicycles of

length k.

Proof. When k = 1, the proof is presented as theorem (1.7.1) in Ref.[16].

We just give the proof of the theorem for k = 2, the other cases for k > 3

are similar and we omitted them. Let {xn} be a solution of equation (3.5.1)

with at least three semicycles, then there exists N > 0 such that either

xN−1 < x̄ 6 xN+1

or

xN−1 > x̄ > xN+1

We will assume that

xN−1 < x̄ 6 xN+1
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the other case is similar and will be omitted.

Then by using the monotonic character of f(x, y) we have

xN+2 = f(xN+1, xN−1) < f(x̄, x̄) = x̄

and

xN+3 = f(xN+2, xN) > f(x̄, x̄) = x̄

thus

xN+2 < x̄ < xN+3

The proof is complete.

By using the theorems (3.9)-(3.12) together with theorems (3.14)-

(3.16), it is easy to obtain the following results concerning semicycle analysis.

Theorem 3.17. Assume that p = q, p+1 > r, and {yn}∞n=−k is a nonnegative

solution of equation (3.2.1). Then the following statements are true:

(i) Except possibly for the first semicycle, every oscillatory solution of equa-

tion (3.2.1) has semicycles of length k.

(ii) If (y−k − ȳ)(y−k+1 − ȳ) · · · (y0 − ȳ) > 0, then {yn}∞n=−k is not an oscil-

latory solution.

Theorem 3.18. Assume that p > q, p+1 > r, and {yn}∞n=−k is a nonnegative

solution of equation (3.2.1). Then the following statements are true:

(i) If p 6 q + qr
p

, then except possibly for the first semicycle, every oscilla-

tory solution of equation (3.2.1) has semicycles of length k.
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(ii) If q + qr
p
< p < q + r, then except possibly for the first semicycle,

every oscillatory solution of equation (3.2.1) which lies in the invariant

interval [0, r
p−q ] has semicycles of length k.

(iii) If p > q + r, then every oscillatory solution of equation (3.2.1) which

lies in the invariant interval [ r
p−q ,

p
q
] has semicycles of length at least k.

(iv) If p = q + r, then equation (3.2.1) does not have oscillatory solutions.

Theorem 3.19. Assume that q > p, p+1 > r, and {yn}∞n=−k is a nonnegative

solution of equation (3.2.1). Then the following statements are true:

(i) If q 6 p+ pr, then except possibly for the first semicycle, every oscilla-

tory solution of equation (3.2.1) has semicycles of length k.

(ii) If p+pr < q < p+qr, then every oscillatory solution of equation (3.2.1)

which lies in the invariant interval [0, pr
q−p ] has semicycles of length k.

(iii) If q > p + qr, then every oscillatory solution of equation (3.2.1) which

lies in the invariant interval [ pr
q−p , 1] has semicycles of length k.

(iv) If q = p + qr, then every oscillatory solution of equation (3.2.1) has

semicycles of length k. In particular, equation (3.2.1) does not have

oscillatory solutions with (y−k − p
q
)(y−k+1 − p

q
) · · · (y0 − p

q
) > 0.

3.9 Analysis of Global Stability

In this section we will consider the global asymptotic stability for the

zero and positive equilibrium points of equation (3.2.1). In section (3.4), we
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investigated local stability of the zero and positive equilibrium points, so it

is sufficient to investigate the globally attractivity of the zero and positive

equilibrium points.

Now, we present some theorems which will be used in this section.

Theorem 3.20. [6, 16] Consider the difference equation

yn+1 = f(yn, yn−k), n = 0, 1, . . . (3.9.1)

where k ∈ {1, 2, . . .}. Let I = [a, b] be some interval of real numbers and

assume that

f : [a, b]× [a, b]→ [a, b]

is a continuous function satisfying the following properties:

(a) f(u, v) is nondecreasing in each of its arguments u and v.

(b) The equation

f(y, y) = y

has a unique positive solution.

Then equation (3.9.1) has a unique equilibrium point ȳ ∈ [a, b] and every

solution of equation (3.9.1) converges to ȳ.

Proof. Set

m0 = a and M0 = b

and for i = 1, 2, . . . set

Mi = f(Mi−1,Mi−1) and mi = f(mi−1,mi−1)
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Now observe that for each i > 0,

m0 6 m1 6 · · · 6 mi 6 · · · 6Mi 6 · · · 6M1 6M0,

and

mi 6 yl 6Mi for l > 2i+ 1.

Set

m = lim
i→∞

mi and M = lim
i→∞

Mi.

Then clearly

m 6 lim inf
i→∞

yi 6 lim sup
i→∞

yi 6M

and by the continuity of f ,

m = f(m,m) and M = f(M,M).

In view of (b),

m = M = ȳ,

from which the result follows.

Theorem 3.21. [6, 16] Consider the difference equation

yn+1 = f(yn, yn−k), n = 0, 1, . . . (3.9.2)

where k ∈ {1, 2, . . .}. Let I = [a, b] be some interval of real numbers and

assume that

f : [a, b]× [a, b]→ [a, b]

is a continuous function satisfying the following properties:

(a) f(u, v) is nondecreasing in u ∈ [a, b] for each v ∈ [a, b] and nonincreasing

in v ∈ [a, b] for each u ∈ [a, b].
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(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

m = f(m,M) and M = f(M,m),

then m = M .

Then equation (3.9.2) has a unique equilibrium ȳ and every solution of equa-

tion (3.9.2) converges to ȳ.

Theorem 3.22. [6, 16] Consider the difference equation

yn+1 = f(yn, yn−k), n = 0, 1, . . . (3.9.3)

where k ∈ {1, 2, . . .}. Let I = [a, b] be some interval of real numbers and

assume that

f : [a, b]× [a, b]→ [a, b]

is a continuous function satisfying the following properties:

(a) f(u, v) is nonincreasing in u ∈ [a, b] for each v ∈ [a, b] and nondecreasing

in v ∈ [a, b] for each u ∈ [a, b].

(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

m = f(M,m) and M = f(m,M),

then m = M .

Then equation (3.9.3) has a unique equilibrium ȳ ∈ [a, b] and every solution

of equation (3.9.3) converges to ȳ.
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Proof. Set

m0 = a and M0 = b

and for i = 1, 2, . . . set

mi = f(Mi−1,mi−1) and Mi = f(mi−1,Mi−1)

Now observe that

m0 6 m1 6 · · · 6 mi 6 · · · 6Mi 6 · · · 6M1 6M0,

and

mi 6 yl 6Mi for l > 2i+ 1.

Set

m = lim
i→∞

mi and M = lim
i→∞

Mi.

Then clearly

m 6 lim inf
i→∞

yi 6 lim sup
i→∞

yi 6M

and by the continuity of f ,

m = f(M,m) and M = f(m,M).

In view of (b) m = M = ȳ. The proof is complete.

Theorem 3.23. [6, 16] Consider the difference equation

yn+1 = f(yn, yn−k), n = 0, 1, . . . (3.9.4)

where k ∈ {1, 2, . . .}. Let I = [a, b] be some interval of real numbers and

assume that

f : [a, b]× [a, b]→ [a, b]

is a continuous function satisfying the following properties:
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(a) f(u, v) is nonincreasing in each of its arguments u and v.

(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

m = f(M,M) and M = f(m,m),

then m = M .

Then equation (3.9.4) has a unique equilibrium ȳ ∈ [a, b] and every solution

of equation (3.9.4) converges to ȳ.

Proof. Set

m0 = a and M0 = b

and for i = 1, 2, . . . set

mi = f(Mi−1,Mi−1) and Mi = f(mi−1,mi−1)

Now observe that

m0 6 m1 6 · · · 6 mi 6 · · · 6Mi 6 · · · 6M1 6M0,

and

mi 6 yl 6Mi for l > 2i+ 1.

Set

m = lim
i→∞

mi and M = lim
i→∞

Mi.

Then clearly

m 6 lim inf
i→∞

yi 6 lim sup
i→∞

yi 6M

and by the continuity of f ,

m = f(M,M) and M = f(m,m),
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and so m = M = ȳ.

The proof is complete.

3.9.1 The Global Stability of the Zero Equilibrium

Here we study the global stability of the zero equilibrium point under

the condition p+ 1 < r.

Theorem 3.24. Assume that p+1 < r, then the zero equilibrium of equation

(3.2.1) is globally asymptotically stable.

Proof. Consider the function

f(x, y) =
px+ y

r + qx+ y

By using theorem (3.9) (ii,iii,iv), note that f(x, y) is nondecreasing in each

of its arguments in the intervals

I =


[0, r

p−q ] where p > q

[0, pr
q−p ] where p < q

[0,∞] where p = q

Now, let (m,M) ∈ I × I is a solution of the system

m = f(M,M) and M = f(m,m),

then

m =
pM +M

r + qM +M
and M =

pm+m

r + qm+m
,
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rm+ qmM +mM = pM +M

rM + qmM +mM = pm+m

this yields (M −m)(r + p+ 1) = 0, then the only solution is m = M .

Then both conditions of theorem (3.20) hold, therefore, every solution

of equation (3.2.1) converges to ȳ in the interval I.

As ȳ is locally asymptotically stable under the condition p+ 1 < r as

shown in subsection (3.4.1), then by definition (3.2), it is globally asymptoti-

cally stable on the interval I.

3.9.2 The Global Stability of the Positive Equilibrium

Here we study the global stability of the positive equilibrium point

remembering that we studied the local stability of the positive equilibrium

point under the following conditions:

p+ 1 > r, (3.9.5)

and

q + r < 3p+ 1 + qr + pq. (3.9.6)

Theorem 3.25. Assume that p > q, (3.9.5) and (3.9.6) hold, then:

(i) If p 6 q + qr
p

, then the unique positive equilibrium of equation (3.2.1)

on the interval [0, p
q
] is globally asymptotically stable.

(ii) If q + qr
p
< p < q + r, then the unique positive equilibrium of equation

(3.2.1) on the interval [0, r
p−q ] is globally asymptotically stable.
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(iii) If q + r < p 6 1 + r, then the unique positive equilibrium of equation

(3.2.1) on the interval [ r
p−q ,

p
q
] is globally asymptotically stable.

Proof. (i) Consider the function

f(x, y) =
px+ y

r + qx+ y

By using theorem (3.9) (iii), note that f(x, y) is nondecreasing in each

of its arguments in the interval [0, r
p−q ].

By the assumption q < p 6 q + qr
p

, implies that p
q
6 r

p−q , so f(x, y) is

nondecreasing in each of its arguments in the interval [0, p
q
] ⊂ [0, r

p−q ].

Now, let (m,M) ∈ [0, p
q
]× [0, p

q
] is a solution of the system

m = f(M,M) and M = f(m,m),

then

m =
pM +M

r + qM +M
and M =

pm+m

r + qm+m
,

rm+ qmM +mM = pM +M

rM + qmM +mM = pm+m

this yields (M −m)(r + p+ 1) = 0, then the only solution is m = M .

Therefore, both conditions of theorem (3.20) hold, then every solution

of equation (3.2.1) converges to ȳ in the interval [0, p
q
].

As ȳ is locally asymptotically stable under the conditions (3.9.5) and

(3.9.6), then it is globally asymptotically stable on the interval [0, p
q
] by

the definition (3.2).
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(ii) As we have seen above, by theorem (3.9) (iii) the function f(x, y) is

nondecreasing in each of its arguments in the interval [0, r
p−q ].

Let (m,M) ∈ [0, r
p−q ]× [0, r

p−q ] is a solution of the system

m = f(M,M) and M = f(m,m),

then

m =
pM +M

r + qM +M
and M =

pm+m

r + qm+m
,

rm+ qmM +mM = pM +M

rM + qmM +mM = pm+m

this yields (M −m)(r + p+ 1) = 0, then the only solution is m = M .

Therefore, both conditions of theorem (3.20) hold, then every solution

of equation (3.2.1) converges to ȳ in the interval [0, r
p−q ].

Since ȳ is locally asymptotically stable under the conditions (3.9.5) and

(3.9.6), then it is globally asymptotically stable on the interval [0, r
p−q ]

by the definition (3.2).

(iii) By theorem (3.9) (iii) the function f(x, y) is nondecreasing in x

and nonincreasing in y in the interval [ r
p−q ,∞). By the assumption

q + qr
p
< p < q + r, implies qr

p
< p − q < r then 1 < r

p−q <
p
q
, i.e. the

interval [ r
p−q ,

p
q
] ⊂ [ r

p−q ,∞).

Let (m,M) ∈ [ r
p−q ,

p
q
]× [ r

p−q ,
p
q
] is a solution of the system

m = f(m,M) and M = f(M,m),

then

m =
pm+M

r + qm+M
and M =

pM +m

r + qM +m
,
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rm+ qm2 +mM = pm+M

rM + qM2 +mM = pM +m

this yields

(M −m) [r + q(M +m)− p+ 1] = 0

Then either m = M or M + m =
p− (1 + r)

q
which contradicts the

assumption p < 1 + r. So the only solution is m = M .

Then both conditions of theorem (3.21) hold, therefore every solution

of equation (3.2.1) converges to ȳ in the interval [ r
p−q ,

p
q
].

By definition (3.2), ȳ is locally asymptotically stable under the condi-

tions (3.9.5) and (3.9.6), then it is globally asymptotically stable on the

interval [ r
p−q ,

p
q
].

Theorem 3.26. Assume that p < q, (3.9.5) and (3.9.6) hold, then:

(i) If q 6 p + pr, then the unique positive equilibrium of equation (3.2.1)

on the interval [0, p
q
] is globally asymptotically stable.

(ii) If p+ pr < q < p+ qr, then the unique positive equilibrium of equation

(3.2.1) on the interval [0, pr
q−p ] is globally asymptotically stable.

(iii) If q > p + qr, then the unique positive equilibrium of equation (3.2.1)

on the interval [ pr
q−p , 1] is globally asymptotically stable.

Proof. (i) Consider the function

f(x, y) =
px+ y

r + qx+ y
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By using theorem (3.9) (iv), note that f(x, y) is nondecreasing in each

of its arguments in the interval [0, pr
q−p ].

By the assumption p < q 6 p+ pr, implies that pr
q−p > 1 > p

q
, so f(x, y)

is nondecreasing in each of its arguments in the interval [0, p
q
] ⊂ [0, pr

q−p ].

Now, let (m,M) ∈ [0, p
q
]× [0, p

q
] is a solution of the system

m = f(M,M) and M = f(m,m),

then

m =
pM +M

r + qM +M
and M =

pm+m

r + qm+m
,

rm+ qmM +mM = pM +M

rM + qmM +mM = pm+m

this yields (M −m)(r + p+ 1) = 0, then the only solution is m = M .

Then both conditions of theorem (3.20) hold, therefore, every solution

of equation (3.2.1) converges to ȳ in the interval [0, p
q
].

As ȳ is locally asymptotically stable under the conditions (3.9.5) and

(3.9.6), then it is globally asymptotically stable on the interval [0, p
q
] by

the definition (3.2).

(ii) As we see above, by theorem (3.9) (iv) the function f(x, y) is nonde-

creasing in each of its arguments in the interval [0, pr
q−p ].

Let (m,M) ∈ [0, pr
q−p ]× [0, pr

q−p ] is a solution of the system

m = f(M,M) and M = f(m,m),

then

m =
pM +M

r + qM +M
and M =

pm+m

r + qm+m
,
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rm+ qmM +mM = pM +M

rM + qmM +mM = pm+m

this yields (M −m)(r + p+ 1) = 0, then the only solution is m = M .

Therefore, both conditions of theorem (3.20) hold, then every solution

of equation (3.2.1) converges to ȳ in the interval [0, pr
q−p ].

Since ȳ is locally asymptotically stable under the conditions (3.9.5) and

(3.9.6), then it is globally asymptotically stable on the interval [0, pr
q−p ]

by the definition (3.2).

(iii) By theorem (3.9) (iv) the function f(x, y) is nonincreasing in x and

nondecreasing in y in the interval [ pr
q−p , 1] ⊂ [ pr

q−p ,∞).

Let (m,M) ∈ [ pr
q−p , 1]× [ pr

q−p , 1] is a solution of the system

m = f(M,M) and M = f(m,m),

then

m =
pM +M

r + qM +M
and M =

pm+m

r + qm+m
,

rm+ qmM +mM = pM +M

rM + qmM +mM = pm+m

this yields (M −m)(r + p+ 1) = 0, then the only solution is m = M .

Therefore, both conditions of theorem (3.22) hold, then every solution

of equation (3.2.1) converges to ȳ in the interval [ pr
q−p , 1].

By definition (3.2), ȳ is locally asymptotically stable under the condi-

tions (3.9.5) and (3.9.6), then it is globally asymptotically stable on the

interval [ pr
q−p , 1].
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Theorem 3.27. Assume that p = q, (3.9.5) and (3.9.6) hold, then the unique

positive equilibrium of equation (3.2.1) is globally asymptotically stable.

Proof. Consider the function

f(x, y) =
px+ y

r + px+ y

By using the derivative of f(x, y) with respect to x and y, then f(x, y) is

nonincreasing in each of its arguments.

Now, let (m,M) ∈ [0,∞]× [0,∞] is a solution of the system

m = f(M,M) and M = f(m,m),

then

m =
pM +M

r + pM +M
and M =

pm+m

r + pm+m
,

rm+ qmM +mM = pM +M

rM + qmM +mM = pm+m

this yields (M −m)(r + p+ 1) = 0, then the only solution is m = M .

Therefore, both conditions of theorem (3.23) hold, then every solution

of equation (3.2.1) converges to ȳ.

As ȳ is locally asymptotically stable under the conditions (3.9.5) and

(3.9.6), then it is globally asymptotically stable by the definition (3.2).



CHAPTER 4

Special Cases of βγABC = 0

In this chapter we will study the character of solutions of equation

(3.0.1), where one or two of the parameters in equation (3.0.1) are zeros.

There are many equations that arise by considering zero parameters.

Observe that some of these equations are quite interesting and have

been studied by some researchers, while few of them are meaningless such as

the case when all the parameters in the denominator or the numerator are

zero.

4.1 One of the Parameters βγABC = 0

In this section we will study the characteristics of the solutions of

equation (3.0.1), where one of the parameters β, γ, A, B or C equals zero.
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There are five such equations, namely:

xn+1 =
γxn−k

A+Bxn + Cxn−k
, n = 0, 1, . . . (4.1.1)

xn+1 =
βxn

A+Bxn + Cxn−k
, n = 0, 1, . . . (4.1.2)

xn+1 =
βxn + γxn−k
Bxn + Cxn−k

, n = 0, 1, . . . (4.1.3)

xn+1 =
βxn + γxn−k
A+ Cxn−k

, n = 0, 1, . . . (4.1.4)

xn+1 =
βxn + γxn−k
A+Bxn

, n = 0, 1, . . . (4.1.5)

where the parameters β, γ, A, B and C are positive real numbers and the

initial conditions x−k, x−k+1, . . . , x0 are arbitrary nonnegative real numbers.

4.1.1 Characteristics of xn+1 = γxn−k

A+Bxn+Cxn−k

The change of variables xn = γ
C
yn reduces equation (4.1.1) to the

difference equation

yn+1 =
yn−k

p+ qyn + yn−k
, n = 0, 1, . . . (4.1.6)

where p = A
γ

and q = B
C

.

To find the equilibrium points of equation (4.1.6), assume that

ȳ =
ȳ

p+ qȳ + ȳ

then

ȳ = 0 or ȳ =
1− p
q + 1
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By assuming f(x, y) =
y

p+ qx+ y
, then the linearization of equation

(4.1.6) is

zn+1 −
−qȳ

(p+ qȳ + ȳ)2
zn −

p+ qȳ

(p+ qȳ + ȳ)2
zn−k = 0

Theorem 4.1. The following statements are true:

(i) Assume p > 1, then the zero equilibrium point of equation (4.1.6) is

globally asymptotically stable.

(ii) Assume p < 1 and q < 1, then the positive equilibrium point ȳ = 1−p
q+1

of

equation (4.1.6) is globally asymptotically stable.

Proof. We find the linearized equation about zero equilibrium

zn+1 −
1

p
zn−k = 0 (4.1.7)

The proof of local stability follows immediately by applying theorem (3.3)

on equation (4.1.7).

The linearized equation about positive equilibrium is

zn+1 −
pq − q
q + 1

zn −
p+ q

q + 1
zn−k = 0 (4.1.8)

and then apply theorem (3.3) to satisfy the local stability.

By applying theorem (3.22) on the properties of the function

f(x, y) =
y

p+ qx+ y
, this yields the global asymptotic stability of the two

equilibrium points separately.

Theorem 4.2. Assume that p < 1 and k odd, then equation (4.1.6) has

prime period two solution. If k even then equation (4.1.6) has no prime

period two solution.
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Proof. Let

. . . , ψ, φ, ψ, φ, . . .

be a period two solution of equation (4.1.6), where ψ and φ are two arbitrary

positive and distinct real numbers.

• If k is odd, then yn+1 = yn−k and ψ, φ satisfy the following system:

ψ =
ψ

p+ qφ+ ψ
and φ =

φ

p+ qψ + φ

simplifying the relation in the system to get

(ψ − φ) [p+ (ψ + φ)− 1] = 0

implies that

(ψ + φ) = 1− p,

but ψ and φ are nonnegative, then

1− p > 0 ⇒ p < 1 as expected.

• If k is even, then yn = yn−k and ψ, φ satisfy the following system:

ψ =
φ

p+ qφ+ φ
and φ =

ψ

p+ qψ + ψ

simplifying the relation in the system to get

(ψ − φ)(p+ 1) = 0

implies that ψ = φ or p+ 1 = 0 which is impossible.

The proof is complete.
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4.1.2 Characteristics of xn+1 = βxn
A+Bxn+Cxn−k

The change of variables xn = β
C
yn reduces equation (4.1.2) to the

difference equation

yn+1 =
yn

p+ qyn + yn−k
, n = 0, 1, . . . (4.1.9)

where p = A
β

and q = B
C

.

Let

ȳ =
ȳ

p+ qȳ + ȳ

this yields that the equilibrium points are

ȳ = 0 or ȳ =
1− p
q + 1

.

Assuming the function f(x, y) =
x

p+ qx+ y
, then the linearized equa-

tion associated with equation (4.1.9) about zero equilibrium point is

zn+1 −
1

p
zn = 0

and the linearized equation about the positive equilibrium point is

zn+1 −
1 + pq

q + 1
zn −

p− 1

q + 1
zn−k = 0

By applying the theorems (3.3) and (3.21), we can construct the fol-

lowing theorem.

Theorem 4.3. The following statements are true:

(i) Suppose that p > q, then the zero equilibrium point of equation (4.1.9)

is globally asymptotically stable.
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(ii) Suppose that p < 1 and the initial conditions of equation (4.1.9) are

nonnegative, then the positive equilibrium point ȳ = 1−p
q+1

is globally

asymptotically stable.

4.1.3 Characteristics of xn+1 = βxn+γxn−k

Bxn+Cxn−k

The change of variables xn = γ
C
yn reduces equation (4.1.3) to the

difference equation

yn+1 =
pyn + yn−k
qyn + yn−k

, n = 0, 1, . . . (4.1.10)

where p = β
γ

and q = A
γ

.

To avoid a degenerate situation, assume that p 6= q.

To find the equilibrium points of equation (4.1.10), assume that

ȳ =
pȳ + ȳ

qȳ + ȳ

implies that the only equilibrium point is

ȳ =
p+ 1

q + 1

By assuming f(x, y) =
px+ y

qx+ y
, then the linearized equation associated

with equation (4.1.10) about ȳ = p+1
q+1

is

zn+1 −
p− q

qp+ q + p+ 1
zn −

q − p
qp+ q + p+ 1

zn−k = 0.

Equation (4.1.10) investigated in [20] by M. Saleh and S. Abu-Baha.

Here are the main results.
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Theorem 4.4. The following statements are true:

(i) Assume that p < q, and k is odd, then the positive equilibrium of equa-

tion (4.1.10) is globally asymptotically stable when q < pq + 3p+ 1.

(ii) Assume that p > q, and q < pq + 3p + 1, then the positive equilibrium

of equation (4.1.10) is globally asymptotically stable.

Theorem 4.5. The following statements are true:

(i) If p > q, then equation (4.1.10) has no nonnegative prime period-two

solutions.

(ii) If p < q, then equation (4.1.10) has nonnegative prime period-two so-

lutions if and only if k is odd and q > pq + 3p+ 1.

4.1.4 Characteristics of xn+1 = βxn+γxn−k

A+Cxn−k

The change of variables xn = γ
C
yn reduces equation (4.1.4) to the

difference equation

yn+1 =
pyn + yn−k
q + yn−k

, n = 0, 1, . . . (4.1.11)

where p = β
γ

and q = A
γ

.

To find the equilibrium points of equation (4.1.11), assume that

ȳ =
pȳ + ȳ

q + ȳ
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implies that the equilibrium points

ȳ = 0 or ȳ = p− q + 1

Assuming that the function f(x, y) =
px+ y

q + y
, then the linearized equation

associated with equation (4.1.11) about zero equilibrium point is

zn+1 −
p

q
zn −

1

q
zn−k = 0

and the linearized equation about the positive equilibrium point is

zn+1 −
p

p+ 1
zn −

q − p
p+ 1

zn−k = 0.

Equation (4.1.11) investigated by Li et al in [18] and A. Farhat in [11]

independently. Here are the main results of their studies.

Theorem 4.6. The zero equilibrium point of equation (4.1.11) is globally

asymptotically stable under the condition p + 1 < q. Moreover, the positive

equilibrium point ȳ = p− q + 1 is globally asymptotically stable under the

condition −1 < p− q < 1.

Theorem 4.7. (i) Assume that p < q. If yn 6 q
p
, then yn+1 <

q
p
. Further-

more, every nonnegative solution of equation (4.1.11) eventually enters

the interval [0, q
p
].

(ii) Assume that p > q. If yn > q
p
, then yn+1 <

q
p
. Furthermore, every

nonnegative solution of equation (4.1.11) eventually enters the interval

[ q
p
,∞].

Theorem 4.8. The equation (4.1.11) has no nonnegative solution with prime

period two under any condition.
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4.1.5 Characteristics of xn+1 = βxn+γxn−k

A+Bxn

The change of variables xn = β
B
yn reduces equation (4.1.5) to the

difference equation

yn+1 =
yn + pyn−k
q + yn

, n = 0, 1, . . . (4.1.12)

where p = γ
β

and q = A
β

.

To find the equilibrium points, assume that

ȳ =
pȳ + ȳ

q + ȳ

then

ȳ = 0 or ȳ = p− q + 1

Equation (4.1.12) investigated by Mazrooei-Sebdani et al. in [19] and

Yan et al. in [23] also by Jaberi et al in [7], and the following are main results

of their studies.

Theorem 4.9. (i) If p+1 6 q, then the zero equilibrium point of equation

(4.1.12) is globally asymptotically stable.

(ii) If p < q < p + 1, then the positive equilibrium point ȳ = p− q + 1 is

locally asymptotically stable.

Theorem 4.10. The following statements are true:

(i) Assume k is odd, then equation (4.1.12) has prime period two solution

. . . , ψ, φ, ψ, φ, . . .

if and only if p = q + 1.
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(ii) Assume k is even, then equation (4.1.12) does not have prime period

two solution.

4.2 Two of the Parameters βγABC = 0

In this section we will study the character of solution of equation

(3.0.1), where two parameters of β, γ, A, B and C are zero. There are eight

cases for this equation, namely:

xn+1 =
γxn−k

Bxn + Cxn−k
, n = 0, 1, . . . (4.2.1)

xn+1 =
γxn−k

A+ Cxn−k
, n = 0, 1, . . . (4.2.2)

xn+1 =
γxn−k
A+Bxn

, n = 0, 1, . . . (4.2.3)

xn+1 =
βxn

Bxn + Cxn−k
, n = 0, 1, . . . (4.2.4)

xn+1 =
βxn

A+ Cxn−k
, n = 0, 1, . . . (4.2.5)

xn+1 =
βxn

A+Bxn
, n = 0, 1, . . . (4.2.6)

xn+1 =
βxn + γxn−k

Cxn−k
, n = 0, 1, . . . (4.2.7)

xn+1 =
βxn + γxn−k

Bxn
, n = 0, 1, . . . (4.2.8)
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4.2.1 Characteristics of xn+1 = γxn−k

Bxn+Cxn−k

The change of variables xn = γ
Byn

reduces equation (4.2.1) to the

difference equation

yn+1 = p+
yn−k
yn

, n = 0, 1, . . . (4.2.9)

where p = C
B

.

Equation (4.2.9) investigated by El-Owaidy et al in [9] and M. Saleh

& M. Aloqeili in [21] independently.

4.2.2 Characteristics of xn+1 = γxn−k

A+Cxn−k

The change of variables xn = 1
yn

reduces equation (4.2.2) to the dif-

ference equation

yn+1 =
A

γ
yn−k +

C

γ
, n = 0, 1, . . . (4.2.10)

and this equation is linear first order difference equation.

4.2.3 Characteristics of xn+1 = γxn−k

A+Bxn

The change of variables xn = γ
B
yn reduces equation (4.2.3) to the

difference equation

yn+1 =
yn−k
p+ yn

, n = 0, 1, . . . (4.2.11)

where p = A
γ

.
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To find the equilibrium points of equation (4.2.11), let

ȳ =
ȳ

p+ ȳ

then the equilibrium points are

ȳ = 0 or ȳ = 1− p

Assuming the function f(x, y) =
y

p+ x
, then the linearized equation

associated with equation (4.2.11) about zero equilibrium point is

zn+1 −
1

p
zn−k = 0

and the linearized equation about the positive equilibrium point is

zn+1 − (p− 1)zn − zn−k = 0

Now, by applying the theorems (3.3) and (3.22), we can construct the

following two theorems.

Theorem 4.11. Assume that p > 1, then the zero equilibrium point of equa-

tion (4.2.11) is globally asymptotically stable.

Theorem 4.12. Assume that p < 1, then the zero and positive equilibrium

points of equation (4.2.11) are both unstable.

Theorem 4.13. Assume that p = 1, then equation (4.2.11) has solution with

prime period two when k is odd.

Proof. Let

. . . , ψ, φ, ψ, φ, . . .

be a period two solution of equation (4.2.11), where ψ and φ are two arbitrary

positive and distinct real numbers.



4.2 Two of the Parameters βγABC = 0 86

• If k is odd, then yn+1 = yn−k and ψ, φ satisfy the following system:

φ =
ψ

p+ φ
and φ =

φ

p+ ψ

simplifying the relation in the system to get

(ψ − φ) [p− 1] = 0

implies that p = 1 as expected.

• If k is even, then yn = yn−k and ψ, φ satisfy the following system:

ψ =
φ

p+ ψ
and φ =

ψ

p+ φ

simplifying the relation in the system to get

(ψ − φ) [p+ (ψ + φ) + 1] = 0

implies that

ψ = φ or ψ + φ = −(p+ 1)

which contradicts that ψ and φ are nonnegative.

The proof is complete.

4.2.4 Characteristics of xn+1 = βxn
Bxn+Cxn−k

The change of variables xn = β
Cyn

reduces equation (4.2.4) to the

difference equation

yn+1 = p+
yn
yn−k

, n = 0, 1, . . . (4.2.12)

where p = B
C

.

Equation (4.2.12) investigated by Abu-Saris and DeVault in [1].
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4.2.5 Characteristics of xn+1 = βxn
A+Cxn−k

The change of variables xn = A
C
yn reduces equation (4.2.5) to the

difference equation

yn+1 =
pyn

1 + yn−k
, n = 0, 1, . . . (4.2.13)

where p = β
A

.

To find the equilibrium points of equation (4.2.13), let

ȳ =
pȳ

1 + ȳ

ȳ(1 + ȳ) = pȳ

implies

ȳ = 0 or ȳ = p− 1.

By assuming the function f(x, y) =
px

1 + y
, then the linearized equation

associated with equation (4.2.13) about zero equilibrium point is

zn+1 − pzn = 0

and the linearized equation about the positive equilibrium point is

zn+1 − zn −
(

1

p
− 1

)
zn−k = 0

We can construct the following theorem easily by applying the theo-

rems (3.3) and (3.21).

Theorem 4.14. The following statements are true:
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(i) Assume p < 1, then the zero equilibrium point of equation (4.2.13) is

globally asymptotically stable.

(ii) Assume p > 1 and the initial conditions of equation (4.2.13) are non-

negative, then the positive equilibrium point ȳ = p−1 is globally asymp-

totically stable.

The proof of the theorem follows immediately by applying theorem

(3.3) on the linearized equations and theorem (3.21).

Theorem 4.15. The equation (4.2.13) has no nonnegative solution with

prime period two under any condition.

Proof. Let

. . . , ψ, φ, ψ, φ, . . .

be a period two solution of equation (4.2.13), where ψ and φ are two arbitrary

positive and distinct real numbers.

• If k is odd, then yn+1 = yn−k and ψ, φ satisfy the following system:

φ =
pψ

1 + φ
and ψ =

pφ

1 + ψ

simplifying the relation in the system to get

(ψ − φ) [1 + p+ (ψ + φ)] = 0

implies that (ψ + φ) = −(1 + p) which is impossible since ψ and φ are

nonnegative.
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• If k is even, then yn = yn−k and ψ, φ satisfy the following system:

φ =
pψ

1 + ψ
and ψ =

pφ

1 + φ

simplifying the relation in the system to get

(ψ − φ)(1 + p) = 0

implies that ψ = φ since p 6= −1.

The proof is complete.

4.2.6 Characteristics of xn+1 = βxn
A+Bxn

The change of variables xn = 1
yn

reduces equation (4.2.6) to the dif-

ference equation

yn+1 =
A

β
yn +

B

β
, n = 0, 1, . . . (4.2.14)

and this equation is linear first order difference equation.

4.2.7 Characteristics of xn+1 = βxn+γxn−k

Cxn−k

The change of variables xn = β
C
yn reduces equation (4.2.7) to the

difference equation

yn+1 = p+
yn
yn−k

, n = 0, 1, . . . (4.2.15)

where p = γ
β
.

Equation (4.2.15) is the same as equation (4.2.12) which is investigated

by Abu-Saris and DeVault in [1] as mentioned previously.
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4.2.8 Characteristics of xn+1 = βxn+γxn−k

Bxn

The change of variables xn = γ
B
yn reduces equation (4.2.8) to the

difference equation

yn+1 = p+
yn−k
yn

, n = 0, 1, . . . (4.2.16)

where p = β
γ
.

Equation (4.2.16) is the same as equation (4.2.9) which is investigated

in [9, 21] independently as mentioned previously.



CHAPTER 5

Numerical Approach

In order to support our theoretical discussions and to illustrate the

main results of chapter (3), we consider several interesting numerical exam-

ples in this chapter. These examples represent different types of qualitative

behavior of solutions to nonlinear difference equation

yn+1 =
pyn + yn−k

r + qyn + yn−k
, n = 0, 1, . . . (5.0.1)

In this chapter, to observe this numerical results clearly, we present

tables of solutions that were carried out using MATLAB code in Appendix

(A.1). We choose different values for the parameters p, q and r. It should be

noted that yk, yk+1, . . . , y1, y0 are also different initial values.

To simplify our exposition we restrict our discussion to the following

sections.

91
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5.1 Numerical Approach of Local and Global

Stability

Here in this section, we will study the global stability of our equation

numerically based on some data and figures that we can get using MATLAB.

Example 5.1. Assume that equation (5.0.1) holds, take k = 4 , p = 0.5,

q = 3 and r = 1. So the equation will be reduced to the following:

yn+1 =
0.5 yn + yn−4

1 + 3 yn + yn−4

In this case, the values of p, q, and r satisfy the conditions of local stability

(3.9.5) and (3.9.6), so by theory the value of ȳ is

ȳ =
p+ 1− r
q + 1

=
0.5 + 1− 1

3 + 1
=

1

8
= 0.125

We assume the initial points y0 = 1, y1 = 8, y2 = 5, y3 = 8 and y4 = 3, and

the output of the numerical illustrated in the following table (Table 5.1) and

figure (Fig. 5.1), as expected as the theoretical results.

Example 5.2. In this example, let the parameters p = 2, q = 5 and r = 4,

and k = 3. So the equation (5.0.1) will be reduced to the following:

yn+1 =
2 yn + yn−3

4 + 5 yn + yn−3

We assume the initial points y0 = 3, y1 = 1, y2 = 2 and y3 = 0.5.

In this case, the values of p, q, and r satisfy the condition of global

stability of the zero equilibrium point (p+1 6 r), and this is clear numerically

as illustrated in table (5.2) and figure (5.2).
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Figure 5.1: The Behavior of the equilibrium point of equation yn+1 =

0.5 yn+yn−4

1+3 yn+yn−4

5.2 Numerical Approach of Unstable Case

Example 5.3. Assume that equation (5.0.1) holds, take k = 4 , p = 0.25,

q = 20 and r = 0.1. So the equation will be reduced to the following:

yn+1 =
0.25 yn + yn−4

0.1 + 20 yn + yn−4

We assume the initial points y0 = 2, y1 = 3, y2 = 1, y3 = 4 and y4 = 3.

In this case, the values of p, q, and r contradict the condition of local

stability (3.9.6) such that

q + r > 3p+ 1 + qr + pq

20 + 0.1 > 3× 0.25 + 1 + 20× 0.1 + 0.25× 20
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Table 5.1: The solution of equation yn+1 = 0.5 yn+yn−4

1+3 yn+yn−4

n y(n) n y(n) n y(n) n y(n)

1 1.0000 26 0.1392 51 0.1271 76 0.1253

2 8.0000 27 0.1628 52 0.1279 77 0.1253

3 5.0000 28 0.1512 53 0.1276 78 0.1253

4 8.0000 29 0.1564 54 0.1278 79 0.1253

5 3.0000 30 0.1495 55 0.1274 80 0.1253

6 0.2273 31 0.1348 56 0.1264 81 0.1252

7 0.8380 32 0.1469 57 0.1268 82 0.1252

8 0.6365 33 0.1411 58 0.1267 83 0.1252

9 0.7625 34 0.1437 59 0.1267 84 0.1252

10 0.5378 35 0.1400 60 0.1265 85 0.1252

11 0.1747 36 0.1317 61 0.1260 86 0.1251

12 0.3918 37 0.1380 62 0.1261 87 0.1251

13 0.2960 38 0.1351 63 0.1261 88 0.1251

14 0.3435 39 0.1364 64 0.1261 89 0.1251

15 0.2763 40 0.1344 65 0.1260 90 0.1251

16 0.1561 41 0.1296 66 0.1256 91 0.1251

17 0.2526 42 0.1328 67 0.1257 92 0.1251

18 0.2056 43 0.1314 68 0.1257 93 0.1251

19 0.2277 44 0.1320 69 0.1257 94 0.1251

20 0.1991 45 0.1309 70 0.1256 95 0.1251

21 0.1458 46 0.1281 71 0.1254 96 0.1251

22 0.1926 47 0.1298 72 0.1255 97 0.1250

23 0.1693 48 0.1291 73 0.1254 98 0.1250

24 0.1800 49 0.1294 74 0.1254 99 0.1250

25 0.1662 50 0.1288 75 0.1254 100 0.1250

So we see from the figure (5.3) and table (5.3) that there is no any stable

solution for this case.
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Figure 5.2: The Behavior of the zero equilibrium point of equation yn+1 =

2 yn+yn−3

4+5 yn+yn−3

So, all what we have to say now is that our theoretical discussion was

satisfied with the data we get from our numerical discussion. So we have

correctly illustrated our study for the equation

yn+1 =
pyn + yn−k

r + qyn + yn−k
, n = 0, 1, . . .
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Table 5.2: The solution of equation yn+1 = 2 yn+yn−3

4+5 yn+yn−3

n y(n) n y(n) n y(n) n y(n)

1 3.0000 26 0.0098 51 0.0003 76 0.0000

2 1.0000 27 0.0085 52 0.0003 77 0.0000

3 2.0000 28 0.0074 53 0.0002 78 0.0000

4 0.5000 29 0.0065 54 0.0002 79 0.0000

5 0.4211 30 0.0056 55 0.0002 80 0.0000

6 0.2593 31 0.0049 56 0.0002 81 0.0000

7 0.3452 32 0.0043 57 0.0001 82 0.0000

8 0.1912 33 0.0037 58 0.0001 83 0.0000

9 0.1494 34 0.0033 59 0.0001 84 0.0000

10 0.1115 35 0.0028 60 0.0001 85 0.0000

11 0.1159 36 0.0025 61 0.0001 86 0.0000

12 0.0887 37 0.0022 62 0.0001 87 0.0000

13 0.0711 38 0.0019 63 0.0001 88 0.0000

14 0.0568 39 0.0016 64 0.0001 89 0.0000

15 0.0522 40 0.0014 65 0.0000 90 0.0000

16 0.0444 41 0.0013 66 0.0000 91 0.0000

17 0.0372 42 0.0011 67 0.0000 92 0.0000

18 0.0309 43 0.0010 68 0.0000 93 0.0000

19 0.0271 44 0.0008 69 0.0000 94 0.0000

20 0.0236 45 0.0007 70 0.0000 95 0.0000

21 0.0203 46 0.0006 71 0.0000 96 0.0000

22 0.0173 47 0.0006 72 0.0000 97 0.0000

23 0.0150 48 0.0005 73 0.0000 98 0.0000

24 0.0131 49 0.0004 74 0.0000 99 0.0000

25 0.0114 50 0.0004 75 0.0000 100 0.0000
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Figure 5.3: The Behavior of unstable solution of equation yn+1 =

0.25 yn+yn−4

0.1+20 yn+yn−4
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Table 5.3: The solution of equation yn+1 = 0.25 yn+yn−4

0.1+20 yn+yn−4

n y(n) n y(n) n y(n) n y(n)

1 2.0000 26 0.2414 51 0.1440 76 0.0143

2 3.0000 27 0.0402 52 0.0168 77 0.4474

3 1.0000 28 0.0293 53 0.5142 78 0.0150

4 4.0000 29 0.4657 54 0.0138 79 0.1064

5 3.0000 30 0.0138 55 0.2291 80 0.1447

6 0.0443 31 0.3967 56 0.0417 81 0.0168

7 0.7555 32 0.0173 57 0.0286 82 0.5116

8 0.0733 33 0.0709 58 0.4394 83 0.0138

9 0.7218 34 0.2437 59 0.0139 84 0.2275

10 0.1814 35 0.0150 60 0.3832 85 0.0420

11 0.0238 36 0.5029 61 0.0176 86 0.0285

12 0.5722 37 0.0141 62 0.0686 87 0.4392

13 0.0186 38 0.1647 63 0.2388 88 0.0139

14 0.6083 39 0.0783 64 0.0150 89 0.3816

15 0.0268 40 0.0206 65 0.4934 90 0.0177

16 0.0462 41 0.5010 66 0.0141 91 0.0682

17 0.3658 42 0.0137 67 0.1600 92 0.2396

18 0.0148 43 0.3115 68 0.0788 93 0.0150

19 0.6093 44 0.0244 69 0.0206 94 0.4925

20 0.0145 45 0.0438 70 0.4964 95 0.0141

21 0.1140 46 0.3465 71 0.0138 96 0.1592

22 0.1436 47 0.0142 72 0.3054 97 0.0793

23 0.0170 48 0.4524 73 0.0247 98 0.0205

24 0.5850 49 0.0150 74 0.0435 99 0.4964

25 0.0136 50 0.1073 75 0.3458 100 0.0138
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Appendix

A.1 Matlab Code-Plot Difference Equation

This code of MATLAB is to plot the difference equation

yn+1 =
pyn + yn−k

r + qyn + yn−k

with the entered parameters p, q, r and the initial values y−k, . . . , y0.

%Dynamical of Nonlinear Difference Equation

%Amer Jafar

%Master of Sci Computing Program

clear all;

format short;

%%%%%%%%%%%%%%%%%%%%%%%%%%

99
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disp(’------------------------------------ ’);

disp(’This matlab program to plot the difference equation:’);

disp(’------------------------------------ ’);

fprintf(’\n First: Input The Constants Values of

the Difference Equation \n’)

disp(’ ’)

p=input(’The value of the positive parameter p= ’);

q=input(’The value of the positive parameter q= ’);

r=input(’The value of the positive parameter r= ’);

disp(’------------------------------------ ’);

k=input(’Second: Input The value of k \n k= ’);

disp(’------------------------------------ ’);

fprintf(’\n Now Enter the initial conditions of the Diff.Equation\n ’)

%------------------------

for i=1:k+1;

fprintf(’Enter the value of y%0.0f \n ’,i-1);

y(i)=input (’ ’);

end

for n=k+1:100;

y(n+1)=(p*y(n)+y(n-k))/(r+q*y(n)+y(n-k));

y(n+1);

end

t=1:101;

ans=[t;y]’;

plot(t(k+5:101),y(k+5:101),’b.-’)



A.2 Matlab Code-Simplify the Linearized Equation 101

xlabel(’N-iteration’); ylabel(’Y(N)’);

title(’plot of y(n+1)=(p+y(n-k))/(r+q*y(n)+y(n-k))’)

hold on

grid on

p1=strcat(’k=’,num2str(k));

p2=strcat(’p= ’,num2str(p),’, r=’ ,num2str(r),’, q= ’,num2str(q));

legend(p1,p2)

%--------------------------------

disp(’The results are: ’)

disp(’__________________________________________________’)

disp(’ n y(n) n y(n) n y(n) n y(n)’)

disp(’__________________________________________________’)

D=[ans(1:25,:),ans(26:50,:),ans(51:75,:),ans(76:100,:)]; disp(D)

A.2 Matlab Code-Simplify the Linearized

Equation

This code is to find fx(x, y) and fy(x, y) of the function

f(x, y) = px+y
r+qx+y

, then simplify the values of fx(ȳ, ȳ) and fy(ȳ, ȳ) to find the

linearized equation.

%This code simplify the linearized equation

clear all;

syms x y F0 q p r fx fy

F0=(p*x+y)/(r+q*x+y); %define the fuction
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ybar=(p+1-r)/(q+1); %set the equilibrium point value

Fx = diff(F0, x); % differeniate F0 with respect to x

latex(Fx) %write the differenial of F0_x in latex

Fy = diff(F0, y); % differeniate F0 with respect to y

latex(Fy) %write the differenial of F0_y in latex

%substitite ybar and simplify

SFx=simplify(subs(Fx,{x,y},{ybar,ybar}))

%substitite ybar and simplify

SFy=simplify(subs(Fy,{x,y},{ybar,ybar}))

latex(SFx) %write the simplification in latex

latex(SFy) %write the simplification in latex
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