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Abstract

The main goal of this thesis is to investigate the bounded-
ness, invariant intervals, semi-cycles and global attractivity of

all nonnegative solutions of the equation

ngn + VYLn—k
A+ Bz, +Cxyp_y’

Tpyl = n=20,1,2,...

where the parameters 3, v, A, B and C and the initial conditions

T_j, T gil,---,Toare non-negative real numbers, k = {1,2,...}.

We give a detailed description of the semi-cycles of solutions,
and determine conditions that satisfy the global asymptotically

stable of the equilibrium points.

In particular, this monograph is a generalization of the ratio-

nal difference equation that was investigated in [13].
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CHAPTER 1

Introduction

1.1 Preliminary

The dynamic of any situation refers to how the situation changes over
the course of time. A dynamical system is a physical setting together with
rules for how the setting changes or evolves from one moment of time to the
next. In simplest terms, a dynamical system is a system that changes over

time.

For example, a moving body may be represented by state variable of
velocity and position over time. Model of population dynamic, the system
state variable may be the number of population that migrate, born and dead

and the existing population.

Dynamical systems theory is an area of applied mathematics used to
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describe the behavior of complex dynamical systems, usually by employing
differential equations or difference equations. When differential equations
are employed, the theory is called continuous dynamical systems. When
difference equations are employed, the theory is called discrete dynamical
systems. When the time variable runs over a set which is discrete over
some intervals and continuous over other intervals or is any arbitrary time-
set such as a cantor set then one gets dynamic equations on time scales.
Some situations may also be modeled by mixed operators such as differential-

difference equations.

This theory deals with the long-term qualitative behavior of dynam-
ical systems, and the studies of the solutions to the equations of motion of
systems that are primarily mechanical in nature; although this includes both
planetary orbits as well as the behavior of electronic circuits and the solu-
tions to partial differential equations that arise in biology. Much of modern

research is focused on the study of chaotic systems.

One basic goal of the mathematical theory of dynamical systems is
to determine or characterize the long-term behavior of the system. Different
kinds of dynamical systems have common characteristics: Symbolic, discrete,
continuous, and fractal dynamic systems . In the study of dynamic systems

we try to determine the future behavior given the past and present behaviors.
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1.2 Equilibrium Points

Let us consider the difference equation

z(n+1) = f(z(n)) (1.2.1)

When we study the dynamics of a difference equation, we attempt to do the
following actions: determine equilibrium points and periodic points, analyze
their stability and asymptotic stability, and determine periodic points. In
this chapter we give rigorous definitions of all these notions for the difference

equation (1.2.1)).

Definition 1.1. A point Z in the domain of f(z) is said to be an equilibrium

point of equation (1.2.1)) if it is a fized point of f, i.e., f(z) = .

Graphically speaking, an equilibrium point of a map f(z) is a point

where the curve y = f(x) intersects the diagonal line y = .

3

Example 1.1. The equilibrium points of the cubic map f(x) = z”® can be

obtained by solving the equation 2% = z or 23 — 2 = 0.

Hence, there are three equilibrium points —1, 0, and 1 for this map (see

Figure .

1.3 Stability Theory

One of the main objectives in the theory of dynamical systems is the

study of the behavior of orbits near equilibrium points, in other words, the
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(0,0)

('17'1)

Figure 1.1: The equilibrium points of f(z) = 23 are the intersection points

with the diagonal line.

behavior of solutions of a difference equation near equilibrium points. Such
a program of investigation is called stability theory, which henceforth will be
our main focus in this chapter and the next. We begin our exposition by

introducing the basic notions of stability.
Definition 1.2. [10] Let Z be an equilibrium point of equation ([1.2.1)):
(a) The equilibrium point z of equation (1.2.1)) is called stable if for every

€ > 0 there exists 6 > 0 such that |zo — z| < ¢ implies |z,, — Z| < € for

all n > 0.

(b) The equilibrium point Z of equation (1.2.1) is called attracting if there

exists 7 > 0 such that |zg — Z| < n implies lim z(n) = Z.
n—oo
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If n = oo, then ¥ is called a global attractor.

(¢) The equilibrium point z of equation (1.2.1) is called globally

asymptotically stable if it is stable and a global attractor.

(d) The equilibrium point Z is called unstable if it is not stable.

Example 1.2. Consider the difference equation
Tpt1 :xi—Zmn—l—l
So f(z) = 2* — 2z + 1. To find the equilibrium points, let
T=1-27+1

which implies £ = 1 or & = 2 are equilibrium points.

Suppose at some point the solution of a difference equation deviates
from the equilibrium value. Will the solution return to the equilibrium value?

This problem is called stability problem of the difference equation.

Suppose we are studying the growth of a population and suppose the
population has reached a point where for all intents and purposes it is not
changing. We say that the population is in equilibrium with its surrounding
and the value of the population is the population equilibrium value. Now
suppose there is a disaster and 10% of the population is suddenly killed. Will
the population return to its original equilibrium value? Will it oscillate? Will

it become extinct? Will the population find a new equilibrium value?

We called the equilibrium value is attracting or stable. Regardless the

choice of xg, the solution of a stable difference equation will stabilize itself
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even if it is temporarily perturbed from its course. The equilibrium is called
unstable (repelling) if the solution is perturbed, it remains at its perturbed

value and does not return to its original value[22].
The following theorems are used to characterize the stability of the
equilibrium points.
Theorem 1.1. Let T be an equilibrium point of the difference equation
Tnr1 = flx,) (1.3.1)

where f is continuously differentiable at T, then the following statements are

true:

(i) If | f'(Z)| < 1, then T is asymptotically stable.
(i1) If | f'(z)| > 1, then T is unstable.
In the difference equations, the equilibrium point Zz is said to be
hyperbolic it |f'(z)| # 1, and unhyperbolic if |f'(z)| = 1.

The following two theorems treat stability of unhyperbolic points.

Theorem 1.2. Let T be an equilibrium point of the difference equation

, and suppose ['(z) = 1. The following statements are true:

(1) If f"(z) # 0, then T is unstable.
(i1) If f"(z) =0 and f"(z) > 0 then T is unstable.

(i) If f"(Z) =0 and f"(z) < 0 then T is asymptotically stable.
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Definition 1.3 (Schwarzian Derivative). Let f be a continuous and differen-
tiable function for three level in some interval I. The Schwarzian Derivative
Sf(z) of f at a point z € I , where f'(x) # 0 , is given by

-58-317]

Sf(x)

Theorem 1.3. Let T be an equilibrium point of the difference equation

1.5.1)), and suppose f'(z) = —1. The following statements are true:

(1) If Sf(z) <0, then T is asymptotically stable.

(ii) If Sf(z) > 0, then T is unstable.

where Sf(z) is the Schwarzian Derivative of f.

Example 1.3. Consider the map f(z) = 22 + 3x on the interval [—3, 3].

Find the equilibrium points and then determine their stability.
Solution. The equilibrium points of f are obtained by solving the equation
P +3r =2

Thus, there are two equilibrium points: z; = 0 and 7y = —2
So for Z1, we have f'(0) = 3 > 1, which implies by theorem ((1.1]) that z; =0

is unstable.

For zo = —2, we have f’(—2) = —1, which requires the employment of
theorem (|1.3). We observe that

2P = —6<0

S(=2) = —1"(-2) -

Hence, zo = —2 is asymptotically stable.
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1.4 The Cobweb Diagram

One of the most effective graphical iteration methods to determine
the stability of equilibrium points is the cobweb diagmrrﬂ. On the xy—plane,
we draw the curve y = f(x) and the diagonal line y = = on the same plot.
We start at an initial point xy. Then we move vertically until we hit the
graph of f at the point (x¢, f(z¢)). We then travel horizontally to meet the

line y = z at the point (f(xo), f(z¢)). This determines f(z() on the x-axis.

2 T T T T T T T T T

18} @ .

16

141 .

08t -

06F -

0.4F -

02r -

Figure 1.2: Cobweb (Stair step) diagram.

To find f2(xy), we move again vertically until we strike the graph of f at the

point (f(xg), f?(xo)); and then we move horizontally to meet the line y = x at

Tt is also called the stair-step diagram.
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the point (f%(zo), f2(z0)). Continuing this process, we can evaluate all of the

points in the orbit of xy, namely, the set {zq, f(xo), f*(x0), ..., f"(x0),...}

(See Figure ((1.2))).

1.5 Periodicity and General Background

The most important notion in the study of dynamical systems is the
notion of periodicity. For example, the motion of a pendulum is periodic.
Another example, the sensitivity of the suppliers to price is equal to the
sensitivity of consumers to price, then prices oscillate between two values

only.

Definition 1.4 (Periodicity). Let b be in the domain of f, then b is called a
periodic point of f if for some positive integer k, f*(b) = b. Hence a point is
k-periodic if it is a fixed point of f*, that is, if it is an equilibrium point of
the difference equation

z(n+1) = ff(z(n))
The periodic orbit of b,
O(b) = {b’ f(b)’ fQ(b)> ) fk_l(b)}a
is often called a k-cycle.

Definition 1.5 (eventually k-periodic). Let b be in the domain of f, then
b is called eventually k-periodic if for some positive integer m, f™(b) is a

k-periodic point. In other words, b is eventually k-periodic if

FE () = f ()
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Graphically, we can find the k-periodic point of such a function by
finding the point for which the diagonal y = z intersects the graph of f*(x)

and then finding the z-coordinate of such a point.
Example 1.4. Take the equation
r(n+1)=2*n)—1

Then f(z) = 2* — 1. As we want to find the 2-periodic points, we must find
F*(x).
We know that f2(z) = f(f(x)) = f(z* — 1) = 2* — 222 We will plot

f? and see where will it intersect y = x.

2..

Figure 1.3: 2-periodic points of z(n + 1) = 2%(n) — 1

As we see in the figure (1.3]), the 2-periodic points of our equation are
—0.1, —0.622, 0 and 1.618.

Definition 1.6. Let b be a k-period point of f. Then b is:

(i) stable if it is a stable fixed point of f*.
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(i) asymptotically stable if it is an asymptotically stable fixed point of f*.
(iii) wunstable if it is an unstable fixed point of f*.

Theorem 1.4. Let O(b) = {b = z(0),z(1),...,x(k — 1)} be a k-cycle of a

continuously differentiable function f. Then the following statements hold:

(i) The k-cycle O(b) is asymptotically stable if

|/ (2(0)) f (1)), ..., f(x(k—1))] < 1.

(ii) The k-cycle O(b) is unstable if

|/ (2(0)) f (1)), ..., f(x(k —1))] > 1.



CHAPTER 2

High Order Difference

Equations

2.1 General theory of Linear Difference

Equations

The standard form of a k*"-order linear difference equation is given by
y(n+k) +pi(n)y(n+k—1)+---+pr(n)y(n) = g(n) (2.1.1)

where p;(n) and g(n) are real-valued functions defined for n > ng and pg(n) #

0 for all n > ny.

If g(n) is identically zero, then (2.1.1) is said to be a homogeneous

equation. Otherwise, it is called a nonhomogeneous equation.

12
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By letting n = 0 in equation (2.1.1)), we obtain y(k) in terms of
y(k—1),y(k —2),...,y(0). Explicitly, we have

y(k) = —p1(0) y(k — 1) = p2(0) y(k = 2) — -+ - — pr(0) y(0) + (0)

Once y(k) is computed, we can go to the next step and evaluate y(k + 1) by
letting n = 1 in equation (2.1.1)). By repeating this process, it is possible to

evaluate all y(n) for n > k.

Theorem 2.1. [I{}] The initial value problems of equation have a

unique solution {y(n)}. or simply y(n).

2.1.1 Linear Homogeneous Equations

In the following, we are going to study the general theory of k*"-order

linear homogeneous difference equations of the form
zn+k)+p(n)z(n+k—1)+---+pe(n)z(n) =0 (2.1.2)

Definition 2.1. [I0] The functions fi(n), fo(n),..., f-(n) are said to be lin-

early independent for n > ng if whenever
ar fi(n) +az fo(n) + - +a fr(n) =0
for all n > ng, then we must have a; =a; =---=a, = 0.

Otherwise, the functions are said to be linearly dependent if one or

more of a;’s are not equal zero.

Definition 2.2. [10] A set of k linearly independent solutions of equation

(12.1.2)) is called a fundamental set of solutions.
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Definition 2.3. [I0] The Casoratian W{(n) of the solutions

21(n), z2(n), ..., z,(n) is given by
z1(n) z2(n) e z,(n)
Wn) = det xl(n‘—i— 1) xQ(n'—F 1) : xr(n.—l— 1)
ri(n+r—1) xe(n+r—1) -+ x.(n+r—1)

Lemma 2.2. Suppose that pp(n) # 0 for all n > ng, then the Casoratian
W(n) # 0 for all n = ng if and only if W(ng) # 0.

Theorem 2.3. The set of solutions x1(n),za(n),...,xzx(n) of equation
is a fundamental set if and only if for some ng € Z7*, the Caso-
ratian W(ng) # 0.

Example 2.1. Consider the third-order difference equation
x(n+3)+3zx(n+2)—4z(n+1)—122(n) =0

Show that the functions 2", (—2)", and (—3)" form a fundamental set of

solutions of the equation.

Solution. First, let us verify that 2" is a legitimate solution by substituting

x(n) = 2" into the equation
2" 4 3(22) —4 (2" —12(2") = 2" [8 + 12 — 8 — 12] = 0.
In the same way, we verify that (—2)™ and (—3)™ are solutions of the equation.

Second, to affirm the linear independent of these solutions we construct

the Casoratian
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Thus
1 1 1
W(0)=det [2 —2 3| =—20#0.
4 4 9

By theorem ({2.3)) the solutions 2", (—2)™ and (—3)" are linearly independent,

and form a fundamental set of solutions.

Theorem 2.4 (Fundamental Theorem). [10] If pr(n) # 0 for all n > ny,
then equation has a fundamental set of solutions for n = ny.

Lemma 2.5. [10] If z1(n), z5(n), ..., z.(n) are solutions of equation (2.1.9),
then

z(n) = a1 x1(n) + az xa(n) + - - - + a, x.(n)

is also a solution of equation (2.1.3), where a1, as, ..., a, are real numbers.

This lemma leads to define the general solution of the homogeneous

equation as follows.

Definition 2.4. [10] Let {z1(n),z3(n),...,xx(n)} be a fundamental set of

solutions of equation (2.1.2)). Then the general solution of equation ([2.1.2))

k
is given by z(n) = Z a;x;(n), for arbitrary constants a;.
i=1
2.1.2 Linear Homogeneous Equations with Constant
Coefficients

Consider the k'-order difference equation

z(n+k)+pxn+k—1)+pz(n+k—2)+ - +prx(n)=0 (2.1.3)
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where the p;’s are constants and p; # 0.

Suppose that our solution is in the form of A", where X is either a real

or a complex number. By substituting this value in (2.1.3), we get
Mg MW g =0 (2.1.4)

This equation is called the characteristic equation of equation (2.1.3), and

its roots {1, g, ..., Ax} are called the characteristic roots.

There are different cases of the characteristic roots, so the general
solution of equation (2.1.3) has different situations depending on the cases

of the characteristic roots:

Case(a): Suppose that the characteristic roots {\1, Ag,..., Az} are distinct.
The fundamental set of solutions will be {A}, A}, ..., A7}, Conse-
quently, the general solution of equation ([2.1.3)) is

z(n) = Z a; A\

=1

where a;’s are constant numbers.
Example 2.2. Find the general solution of
z(n+2)—xz(n+1)—2x(n)=0

Solution. To find the homogeneous solution, we solve the charac-
teristic equation

M-A-2=0

= (A+1)(A=2)=0
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implies that Ay = —1 and \y = 2

So the homogeneous solution is

z(n) = a1 AT +az Ay = ag (—1)" + ay 2".

Case(b): Suppose that the characteristic roots {A1, A2, ..., Ax} all are equal,
so the general solution is given by

k
x(n> = Z )\?(aio +agn+---+ Qi my—1 nmi—l)
i=1

where a;o, a1, -+, @im,—1 are constant numbers.

Example 2.3. Find the general solution of

x(n+2)+a:(n+1)+%lyc(n)—0

Solution. To find the homogeneous solution, we solve the charac-

teristic equation

1
N+ A+-=0
A+

=>()\+%)()\+%)=0
—1

implies that )\1 = )\2 = 7

So the homogeneous solution is
z(n) = a A"+ azn A"
—1\" —1\"
- a\n) Tery

_ (;)n(al-kagn).
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2.1.3 Linear Nonhomogeneous Equation

In the last two subsections we study the solution of the homogeneous
difference equations. Here we will focus on solving the k'"-order linear non-

homogeneous equation
yin+ k) +pi(n)y(n+k—1)+-- +pr(n) y(n) = g(n) (2.1.5)

where pi(n) # 0 for all n > ng. The sequence g(n) is called the forcing term,

the external force, the control or the input of the system.

The equation (2.1.5) represents a physical system in which g(n) is the
input and y(n) is the output. The designing engineer uses g(n) to force the

system to behave in a specified way (control the output y(n)).

Theorem 2.6. [I0] If y1(n) and y»(n) are solutions of equation (2.1.5), then
y(n) = y1(n) — ya(n)
is a solution of the corresponding homogeneous equation
y(n+ k) +pr(n) y(n + k — 1)+ + pi(n) y(n) = 0 (2.1.6)

Theorem 2.7. [10] Any solution y(n) of equation may be written as

k

y(n) = yp(n) + Z a; yi(n)

1=1

where {y1(n),y2(n),...,yx(n)} is a fundamental set of solutions of the ho-

mogeneous equation .

Example 2.4. Find the general solution of

z(n+2)—3x(n+1)+2x(n) = 4" — n?
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Solution. The general solution is
zg(n) = xn(n) + p(n)

where x5, (n) is the homogeneous solution and z,(n) is the particular solution.

To find the homogeneous solution, we solve the characteristic equation
N —3X+2=0

implies

implies that

Then the homogeneous solution is
zp(n) =a X" +b\"

zp(n) =a +b2"

Now, to find the particular solution, let
xp(”) =a14n+a2n2+a3n—|—a4

Substituting this potential solution into the the particular solution formula

and equating coefficients as follows:

zp(n) = 4"+ asni+asn+ay
z,(n+1) = d"™+ay(n+1)+az(n+1)+ay

r,(n+2) = 4" +a,(n+2) +az(n+2)+ay
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Then, substitute the above values of x,’s in the general equation to get

[oq 4" 1 ay (n+2)% 4 as (n+2)+a4}
—3la 4" ay (n+ 1)+ (n—|—1)+a4]
+2 [a14n+a2n2+a3n+a4] = 4" — p?

this formula can simplified to
m4npﬁaax4+2}

+a%n+2—3n—3+24

+ g [n2+4n+4—3n2—6n—3+2n2] = 4" — p?
After doing simple algebraic calculations, we get
614" —2a9n+ ag — ag = 4" — n?

implies that

1
(1/1—6
OéQZO
a3:0

So the particular solution is

1
zp(n) = 5 4" + ay

Thus the general solution of the difference equation is:

1
z4(n) :(a+a4)—|—b2"+64"
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1
xg(n):A—i-bQ”—l—éél"
where A = a + ay.

The values of A and b can be founded by using the initial conditions zy and

21 of the general solution.

2.2 Limiting Behavior of the Solutions

To simplify our exposition we restrict our discussion to the second

order difference equation
y(n+2) +pry(n+1)+py(n) =0 (2.21)

Suppose that A; and Ay are the characteristic roots of the equation. Then

we have the following three cases[10]:

CASE 1: Suppose that A\; and Ay are distinct real roots. Then y;(n) = A}

and yo(n) = Ay are two linearly independent solutions of equation
(2.2.1)). If |[A1] > |A2], then we call y;(n) the dominant solution, and

A1 the dominant characteristic root.

We will now show that the limiting behavior of the general solution
y(n) =ay A7 + ag Ay

is determined by the behavior of the dominant solution. So assume,

without loss of generality, that |A;| > |A2|. Then

o =3¢ (o s (2))
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A

1

Since

A n
< 1 it follows that ()\_2> —0asn— oo
1

Consequently, lim y(n) = lim a; A}
n—oo n—oo
There are six different situations that may arise here depending on

the value of \;

1. A\ > 1: The sequence {a; \I'} — oo (unstable system).
2. Ay = 1: The sequence {a; A7} is a constant sequence.

3. 0 < Ay < 1: The sequence {a; A7} is monotonically decreasing

to zero (stable system).

4. —1 < Ay < 0 : The sequence {a; AT} is oscillating around zero

(i.e., alternating in sign) and converging to zero (stable system).

5. A1 = —1: The sequence {a; A7} is oscillating between two values

a; and —ay.

6. Ay < —1: The sequence {a; A7} is oscillating but increasing in

magnitude (unstable system).

Example 2.5. Find the general solution of

x(n+2)+%m(n+1)—%x(n) =0

and determine the limiting behavior of the solution

Solution. To find the general solution, we solve the characteristic

equation

1 1
AN -A— ==
+2 5 0
1
= A+ DA -3) =0
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CASE 2:

CASE 3:

1
implies that Ay = —1 and \y = 3

So the general solution is

1 n
z(n) =a A\l +agn Ay =a; (—1)" + ay (5) .
We have |A;| > |X\2| and \; = —1, so by applying the fifth item

above, the sequence {a; (—1)"} oscillates between the values a; and

as.
A==
The general solution of (2.2.1) is given by y(n) = (a1 + agn)\".
Clearly, if |A] > 1, the solution y(n) diverges either monotonically
if A > 1 or by oscillating if A < —1. However, if |\| < 1, then the
solution converges to zero, since lim n A" = 0.
n—oo
Example 2.6. Let us check the solution of the equation in example
(2.3)
1
z(n +2) —x(n+1)+1x(n) =0
-1
In this case A\{ = Ay = > and the solution was
—1\"
z(n) =a A\" +ayn\" = (7) (a1 + asn)
. _ -1
We find that the solution converges to zero, since |A| = ‘7’ <1
. -1\"
and lim n (—) =0.
n—o00 2
The last case when the roots A\; and Ay are complex roots. Set

A1 = a+ b and Ay = a — tb. The general solution will be

y(n) = ar™ cos(nf — w)
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where 7 = Va2 + b% and 6 = tan~*(2).

The solution y(n) clearly oscillates, since the cosine function oscil-
lates. However, y(n) oscillates in three different ways depending on

the location of the conjugate characteristic roots:

(a) r > 1: Here A\; and Ay = \; are outside the unit circle. Hence
y(n) is oscillating but increasing in magnitude (unstable sys-

tem).

(b) r = 1: Here A\; and \y = ) lie on the unit circle. In this case

y(n) is oscillating but constant in magnitude.

(¢c) r < 1: Here A\; and Xy = A; lie inside the unit disk. The
solution y(n) oscillates but converges to zero as n — oo (stable

system).
Example 2.7. Consider the difference equation
z(n+2)+az(n+1)+z(n)=0
The characteristic equation is
N+A+1=0

implies that A\; = 1 — ¢ and Ay = 1 + 4, then the general solution
will be
z(n) =« (\/i)n cos(nf — w)

Since r = v/2 > 1, the solution z(n) is oscillating and increasing,

so it is unstable.

The above discussion can be summarized in the following theorem.
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Theorem 2.8. [I0}] The following statements hold:

(i) All solutions of equation oscillate about zero if and only if the

characteristic equation has no positive real roots.

(i) All solutions of equation converge to zero (i.e., the zero solution

is asymptotically stable) if and only if max {|\1], |[A2|} < 1.

Now, consider nonhomogeneous difference equations in which the in-

put is constant, that is, equations of the form
y(n+2) +pry(n+1) + poy(n) = M (2.2.2)

where M is a nonzero constant. Let the equilibrium point or solution be y*,
we have
y oy 2yt =M,
which implies
B M
14+ p1 +po
Since y,(n) = y* is a particular solution of equation (2.2.2)), then the general

*

Y

solution is given by
y(n) = yp(n) +ye(n)
And if we take y,(n) = y*, this concludes to the following theorem.

Theorem 2.9. [10] The following statements hold:

(i) All solutions of the nonhomogeneous equation oscillate about the
equilibrium solution y* if and only if none of the characteristic roots of

the homogeneous equation 1S a positive real number.
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(i) All solutions of equation converge to y* as n — oo if and only
if max {|A\1], [A2|} < 1, where Ay and Ay are the characteristic roots of

the homogeneous equation .

The following theorem provides us with the explicit criteria for stabil-

ity based on the values of the coefficients p; and py of the difference equa-

tions (2.2.1)) or (2.2.2)).

Theorem 2.10. [1(] The conditions
I+pi+p2>0, 1=p1+p2>0, 1—p2>0

are necessary and sufficient conditions for the equilibrium points (solution)

of equations and to be asymptotically stable.

If we consider the above conditions,
1+pr4+p2>0=14ps>—p

and

1—p1+p2>0:>1+p2>p1

implies that

1+ po > |p1

Also

1—p>0=1>p

by adding one for both sides, we get

2>1+ps
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This discussion implies that the conditions in theorem ([2.10]) can be

written under the following compact form

Ip1| < 14+ pe < 2.



CHAPTER 3

Dynamics of

.  Baptym,_p
n+l = AxBz,+Cxz,_.

In this chapter we consider the main issue of this thesis, that is study-
ing and investigating the difference equation

By + YTn—i
A+ Bz, +Cxp_y’

Tpi1 = n=0,1,2,... (3.0.1)

where the parameters 3, v, A, B and C are non-negative real numbers with at
least one parameter is non zero and the initial conditions z_;,x_gi1,..., 20

are non-negative real numbers for which the solution is defined and k €
{1,2,...}.

My concentration is on boundedness, invariant intervals, periodic char-
acter, the character of semi-cycles and global asymptotic stability of zero and

positive solutions of equation (13.0.1]).

28
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It is a good idea to overview the difference equation

/an + TYTn—-1
A+ Bz, +Cxpq’

n=012... (3.0.2)

Lptl =

where the parameters 3, v, A, B and C' are non-negative real numbers and

the initial conditions x_1, xg are non-negative real numbers.

This will help us to study and analyze equation (3.0.1) more theoretically.
The characteristics of equation has been investigated by Lin-Xia Hu
et al. in [I3]. They showed, the global stability of the zero and positive
equilibrium points, invariant intervals and semi-cycle analysis. In addition,
M. Kulenovi¢ and G. Ladas considered equation in their monograph
in [16].

The dynamical characteristics and the behavior of positive solutions
of some higher order nonlinear difference equations have been investigated

by many researchers.

DeVault et al. investigated in [6] the global stability and the periodic
character of solutions of the difference equation

p + Yn—k

Tk =0,1,2,...
qYn + Yn—k

Yn+1 =

where the parameters p and ¢ are positive real numbers and the initial condi-

tions y_, ..., y_1, Yo are arbitrary non-negative real numbers, k € {1,2,...}.

Li and Sun in [I8] and A. Farhat in [11] studied independently the
dynamical characteristics, such as the global asymptotic stability, the invari-
ant interval, the periodic and oscillatory characters of all positive solutions
of the difference equation

Ly, + Ty
gy = P Tk 01,2,
q + Tp—k



30

where the parameters p and ¢ are non-negative real numbers and the initial

conditions x_y, ..., x_1, To are non-negative real numbers, k € {1,2,...}.
In [8], M.M. El-Afifi investigated the local and globally asymptotically
stability and the semi-cycles of the difference equation

o+ an + Yln—1
Bz, +Cx,_1

Tn+1 = 5 n=20,1,2,...

where the parameters «, 3, v, B and C' are non-negative real numbers with
at least one parameter is non zero and the initial conditions z_;, zy are

non-negative real numbers.

A. Farhat studied the general case of the last equation in [I1] and
investigated the periodic character of the positive solution, the invariant in-
tervals, the oscillation and the global stability of all solutions of the difference

equation
a+ ﬁxn + YTn—k
Bz, +Cx,_s

Tnt1 = s n:0,1,2,...

where the parameters «, 3, v, B and C are non-negative real numbers with
at least one parameter is non zero and the initial conditions x_g,...,x_1, 2o

are non-negative real numbers, k € {1,2,...}.

In [T9] Sebdani and Dehghan investigated characteristics such as pe-
riodicity, invariant interval, the character of semicycles, the global stability,

and the boundedness of positive solutions of the difference equation

Yoy = LIk 10

q+ Yn
where the parameters p and ¢ are non-negative real numbers and the initial

conditions y_y, ..., y_1, Yo are non-negative real numbers, k € {1,2,...}.
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M. Saleh and S. Abu-Baha investigated in [20] the difference equation

Bn + YTn

- =0,1,2,...
Bz, + Cx,_yp’ " T

Tnt1 =

where the parameters 3, v, B and C' are non-negative real numbers and the
initial conditions xg, 1, ..., x; are non-negative real numbers with the solu-
tion is defined and k € {1,2,3,...}.

Their concentration was on invariant intervals, periodic character, the char-
acter of semicycles and global asymptotic stability of all positive solutions of

the equation.

Also, Lin-Xia Hu et al. investigated in [I4] the boundedness, invari-
ant interval, semicycle and global attractivity of all positive solutions of the
difference equation

o+ VYTn-1
A+ Bz, +Cxpq’

Tpa1 = n=20,1,2,...

where the parameters «, v, A, B, C' € (0, 00) and the initial conditions x_1, xg

are non-negative real numbers.

3.1 Changing the Variables

Before investigating the characteristics of equation (3.0.1)), it is more

convenient to reduce the number of parameters by a change of variables.

ly
C ny

To change the variables of equation (|3.0.1), assume that x,, =

and substitute it in the equation as the following:

2
v gl

Y

“Yn+1 =

C A+ BL oL
+ Cyn _I_ Cyn—k
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2
tacking a common factor % in the numerator and « in the denominator,

2
g
Y

v B C
cV T TTA B
Yot AYnt Ynk
v C

then 5
Y |:_yn + yn—k:|

lynJrl = 1
C o {A B

; + 5% + ynk:|

which implies

g
—Yn + Yn—k
Yn+1 = i
n+1 A N B N
~ Oyn Yn—k
. s B . :
by assuming p = —, ¢ = c and r = —, we get the following equation:
Y Y
g1 = LTk g (3.1.1)
T+ qYn + Yn—k

3.2 Equilibrium Points

In this section we investigate the equilibrium points of the nonlinear

rational difference equation

n + n—
Yppg = LI Tk 01, (3.2.1)
T+ qYn + Yn—k
where the parameters p, ¢, » and the initial conditions y_g,...,y_1,y0 are

positive real numbers, £k =1,2,....
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Definition 3.1. The equilibrium point § of the equation

ynJrl:f(yn7yn717"'aynfk)> n:()al:"'

is the point that satisfies the condition

y=1@9,..-.9).

To find the equilibrium points of equation (3.2.1)) using the definition,

let f(y,y) =y, then we solve the following equation

pyt+y

Y i Yty

Cross multiplication, implies
gr+(g+ 17" = (p+1)7
Rearranging the terms, we get
(r—=p=17+(¢+1)5"=0

Then,

ylr=p—1+(@+1)y] =0

hence, the equilibrium points of equation (3.2.1)) are

NS
I
(@]

and
_ p+l-—r
4 q+1

where p+1>r.
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3.3 Linearization of the Difference Equation

Consider the k'"-order difference equation of the form
Tt = f(Tn, Tpno1, . s Tok), n=0,1,... (3.3.1)

Assume that f is continuously differentiable in some neighborhood around
%, then we can linearize equation (3.3.1)) around z. Thus, by chain rule, the

linearized equation around Zz becomes

The characteristic equation is given by

k
AL — ‘ gi(x,...,x)A"‘i
=0
or
of Of o of
k+1 _ ZJ Nk ) k=1 TS
A 8u0)\ Gul)\ Ouy, 0

To find the linearization of our equation (3.2.1)) about the equilibrium

point, consider

f(uav)zﬂ
r+qu-+v
Thus
fulwy) = p(r+ qu+v) — q(pu + v)
R (r+ qu + v)?
_ pr -+ pqu + pv — pqu — qU
(r 4+ qu + v)?
pr+(p—qv

(r 4+ qu+ v)?
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Which implies

pr+(p—q)y
2

In the same way

(r + qu+v) — (pu +v)
(r 4+ qu+v)?

r+(q — p)u

(r+ qu +v)?

Substituting y implies

. r+(g—py
fv(y7y) - (7‘+qy+y)
r+(q—p)y
(r+ (¢ +1)y)?

The linearized equation is

Zn4+1 = fu( )Zn+fv(y y)zn k

pr+(p—q)y . r+ (¢ —p)y B
(r+(q+05)2 ™" " (r+(@+1y? "

“n+l =

N pr+(p—q)y r+(a—p)y _
R T e e P ER

and the characteristic equation is

)\n—i—l pr + (

Yy A T+(q_p)y )\n—k’:O

)
(r+(¢+ 1)) (r+(¢+1)7)

which implies

k1 pr+(p— )@ r+(q—py
A _(7"+(q+1)) — =0 (3.3.3)
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3.4 Local Stability of the Equilibrium Points

Our aim in this section is to investigate the local stability of the zero
and positive equilibrium points of equation (3.2.1)) for which we found the

linearized equation in the last section.

First we present some powerful criterion and theorems to study the

local stability of equilibrium points.

Definition 3.2. [19] Let g be an equilibrium point of equation ({3.5.1)).

(i) The equilibrium point gy of equation (3.5.1) is called locally stable
(or stable) if for every e > 0, there exists 6 > 0 such that for all

Y—ks-- - Y-1,Y0 € I with
0

Z|%—?J|<5a

i=—k

we have |y, — y| < € for all n > —k.

(ii) The equilibrium point g of equation (3.5.1)) is called locally asymptoti-
cally stable (asymptotic stable) if it is locally stable, and if there exists
~v > 0 such that for all y_g,...,y_1,y0 € I with

0
>y —al <7,

i=—k

we have lim gy, = 3.
n—oo

(iii) The equilibrium point g of equation (3.5.1) is called a global attractor

if for every y_4,...,y_1,90 € I, we have lim y, = y.
n—oo

(iv) The equilibrium point y of equation (3.5.1)) is called globally asymptot-

ically stable if it is locally stable and a global attractor.
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(v) The equilibrium point § of equation (3.5.1)) is called unstable if it is not

stable.

(vi) The equilibrium point § of equation (3.5.1)) is called a source, or a

repeller, if there exists » > 0 such that for all y_g,...,y_1,y0 € I with
0

Z ly; — y| < 7y, there exists N > 1 such that |yy — y| > 7.

n=—k

Theorem 3.1. [10] Let I be some interval of real numbers and let
[l =T

be a continuously differentiable function. Then for every set of initial condi-

tions x_y,...,x1,xg € I, the difference equation
Topr1 = [(Tn, Tn_k), n=0,1,... (3.4.1)
has a unique solution {x,}>2 .

Theorem 3.2. [15] Assume that a,b € R and k € {1,2,...}. Then
la| + |b] < 1 (3.4.2)
is a sufficient condition for the asymptotic stability of the difference equation
Ynil — QYn + by =0, n=0,1,... (3.4.3)

Suppose in addition that one of the following two cases holds:

(a) k odd and b < 0.

(b) k even and ab < 0.

Then 1 also a mecessary condition for the asymptotic stability of
equation .
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Theorem 3.3. [15] Assume that a,b € R and k € {1,2,...}. Then
la| <1—-b<2

15 a necessary and sufficient condition for the asymptotic stability of the dif-

ference equation
Ynil — QYn — by =0, n=0,1,... (3.4.4)

Theorem 3.4. [16] Assume that all the roots of the characteristic equation
of the above equation ) lie inside the unit circle, then the equilibrium

point is locally asymptotically stable.

3.4.1 Local Stability of the Zero Equilibrium Point

To investigate the local stability of the zero equilibrium point, let us
find the linearized equation about the zero equilibrium point associated with

equation (3.2.1)).

By substituting ¥ = 0 in the linearized equation (|3.3.2)), we find the
linearized equation associated with equation (3.2.1]) about § = 0,

1
Znil — P Zp — = Zp—re = 0 (3.4.5)
r r

Now, let us apply theorem (3.3)) to the above equation ({3.4.5)), so we have
part (I)
1
‘]3‘<1——<2 (3.4.6)
r r

part (II)
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. p . " . .
It is clear that = is positive since p and r are nonnegative, so
r

p_q_1

r T
implies

p<r—1
ie.

p+1<nr.

Now, the right hand inequality in (3.4.6)),

1
1—-<2
r
then
r—1
<2
r
implies
—1<r

which is true for all nonnegative values of r.
The above discussion yields the following theorem.

Theorem 3.5. The zero equilibrium point of equation M 15 locally

asymptotically stable under the condition p+1 < r, otherwise it is unstable.

3.4.2 Local Stability of the Positive Equilibrium Point

In this subsection we prove the local stability of the positive equilib-

rium point under some conditions.
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— p;lr?" of equation (3.2.1

Theorem 3.6. The positive equilibrium point y

1s locally asymptotically stable for all values of the parameters p, q and r

provided that all roots of equation lve inside the unit circle.

Theorem 3.7. Assume that p+ 1 > r, then the positive equilibrium point

— __ ptl-r
Y=

of equation (3.2.1) is locally asymptotically stable when

g+r<3p+1+qr+pq (3.4.7)

Proof. First substitute 7 = 22— in the linearized equation (3.3.2) to get the

g+l
linearized equation about y = £ ;“:T,
pr+(p — )Pt r+ (¢ —p)Eet

Zn+l — n 5 An—k — 0

2
+1—r +1-r

simplifying the above equation by MATLAB program]] we get

p—qtar  pratr
gp+q+p+1" gp+qg+p+1

w =0 (3.4.8)

Zn4+1 —

By applying theorem (3.3 on the linearized equation (3.4.8]), we have

o= p—q-+qr
gp+qg+p+1

and
bt gq+rT
gp+qg+p+1

Now we need to verify the inequality

first side
pmatar | g _ _TPEIET (3.4.9)
a@+q+p+1l|  gp+qg+p+1

second side

Isee the code of simplifying the linearized equation in the Appendix



3.4 Local Stability of the Equilibrium Points 41

First, assume that the left of the first side is positive, then

p—q—+gqr c1_ —p+q+r
gp+qg+p+1 gp+q+p+1

p—q-+qr - gp+2p+1—r
gp+qg+p-+1 gp+qg+p+1

1.e.
p—q+qr<qp+2p+1-—r
implies
r<p-+1

which is the assumption.

Now, assume that the left of the first side of inequality (3.4.9) is neg-

ative, then
_ p—q+tgr < gp+2p+1-—r
gp+q+p+1 gp+qg+p+1
1.e.
—p+qg—qr<gp+2p+1—r
= qg+r<3p+1+qgr+pq
as needed.

The second side of the inequality

T ptag+tr
gp+q+p+1

then
gp+2p+1—r

<2
gp+q+p+1

1.e.

qp+2p+1—1r <2qp+2q+2p+2
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implies
O<gp+2q+1+r

which is true for all positive values of p, ¢ and r.

The proof is complete. O

3.5 Boundedness

In this section we give the boundedness of solutions of the difference

equation (3.0.1). In the beginning we present the following definition.

Definition 3.3. We say that a solution x,, of a difference equation
Tt = f(Tn, Tpo1, - s Tok), n=0,1,... (3.5.1)
is bounded and persists if there exist positive constants P and () such that
P<Lx,<Q for n=—-k —-k+1,...

Theorem 3.8. Assume that B and C' are greater than zero, then every non-
negative solution of equation 1s bounded from above by a positive con-

stant.

Proof. Firt case, assume A = 0, then by using equation (3.0.1)), we can write
the following:

an + YTp—k

Bx, +Cx,_y

max (8,7)(xn + Tn—r)
min (B, C)(x, + Tp_k)
max (8,7)

min (B, C

Tn+1 =

N
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The second case, assume A > 0, then

A+ Bx, + Cx,_y
max (5,7) + By + YTn_k
A+ Bz, + Cxp_p
max (5,7)(1 + z, + Tp—)
min (A, B,C)(1 4+ z,, + Tp—)
max (8, 7)
min (A, B, C)

Tn+1 =

N

N

The proof is complete. 0

3.6 Invariant Intervals

Here we investigate the invariant intervals of equation (3.2.1]), and the

following definition will be a key concept in the monograph.

Definition 3.4 (Invariant Interval). An Invariant Interval of the difference
equation (3.5.1)) is an interval with the property that if k£ + 1 consecutive
terms of the solution fall in I then all subsequent terms of the solution
also belong to I. In other words, I is an invariant interval for if

TN—kils---,TN_1,2n € I for some N > 0, then z,, € [ for every n > N.

Assume that {y,}>>_, is a nonnegative solution of equation (3.2.1)),

then the following identities are easily established:

i

Yn — =5
w1 — 1= (p— e n € Ny, 3.6.1
Yn+1 (P q>r+qyn T 0 ( )
D q—p Yn—k — qpfp
Ynt1 — = = n € Ny (3.6.2)

q q T+ QYnt Yn-k
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If p = ¢ then the numerator in (3.6.1) can be written in the following form

(p—q)yn — 1=~

Thus if p+ 1 > r and p = ¢, the unique equilibrium is y = % and the
following identities hold:
1 - €N (3.6.3)
n+1 — L = ) n , .0.
st P DYa T Yot ’
n - y) + n—k ]
gort == —— PO DTk 79) oy (3.6.4)

p+r1l DY Yook
When p = ¢+, the unique equilibrium is g = 1 and identity (3.6.1]) becomes

T(yn - 1)
T"‘qyn‘i‘ynfk’

And when ¢ = p + gr, the unique equilibrium is § = § and identity 1’

Ynt1 — 1= n e No, (365)

becomes

D r <yn—k — §>
Ynt1 — = = . neNg (3.6.6)
q T+ qYn + Yn—k

Theorem 3.9. [13] Assume that f(z,y) is defined as

fley) = 22

= (3.6.7)
r+qr+vy

Then the following statements hold true:

(i) f(z,z) is strictly increasing in x in [0, 00).

(ii) Assume p = q, then f(z,y) is strictly increasing in each of its arqu-

ments.

(iii) Assume p > q, then f(x,y) is strictly increasing in each of its argu-
ments for x < p%q and 1t 1s strictly increasing in x and decreasing in

S
y forx > Pt



3.6 Invariant Intervals 45

(iv) Assume p < q, then f(x,y) is strictly increasing in each of its argu-
ments for y < % and 1t 1s strictly increasing in y and decreasing in
x fory > =

q—p"°

1
Proof. (i) Note that f(z,x) = btz is strictly increasing function
r+(g+ 1)z

in the interval [0, c0), since the derivative of f

r(p+1)
(r+ (g + 1)x)?

f/(ZL‘, x) =
is always positive for x > 0.

(ii)-(iv) By calculating the partial derivatives of the function f(x,y),

we have that

from which these statements easily follow.

]

Theorem 3.10. Assume that p > q, p+ 1 > r, and that {y,}>2 _, is a

nonnegative solution of equation . Then the following statements are

true:

(i) yn < E for alln € N.
(i) If p = q+r and for some N >0, yny > et then y, > 1 for alln > N.
(iii) If p=q+r and for some N >0, yy =1, then y, = 1 for alln > N.

(i) If p < g+ and for some N >0, yy < ==, theny, <1 for alln > N.

p—q’
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(v) If p < g+ %, then equation possesses an invariant interval [0, g]

and y € [0, £], moreover, the interval [0,1] is also an invariant interval

for equation and y € (0,1).

(vi) If ¢ + % < p < q+r, then equation possesses an invariant
interval [0, =] and y € [0, —=], moreover, the interval [0,1] is also an
P—q P—q

invariant interval for equation and y € (0,1).

(vii) If p > q+r, then equation possesses an invariant interval [, £]

p—a’q

and § € [=, £], moreover, the interval [0, £] is also an invariant inter-

p—q’ q

val for equation and j € (0,2).

Proof. By writing the identity (3.6.2) in the form

- p_q—p yn—k+fTT(]
n+l — 7 — 3
q q T+ QqYn Tt Yn—k

n € Ny

and since p > ¢, implies that

p<0

Yn+1 — —
q

which implies ¥y, < P for all n e N.
q

Since p > ¢+ r, implies that - < 1. By using the identity 1)

T
Yn pP—q

T+ qyn + Yn—k

yN+1—1:(p—Q)

and the assumption p > ¢, then the right side of this identity is greater
than zero, implies yy.1 > 1.

For the next term yn o

YN+1 — p%q

T+ QYUN+1 + YN—k+1

yny2 — 1= (p—1q)
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then the right side of the identity greater than zero since yy,1 > 1 >

1&1’ implies yy12 > 1. By induction y,, > 1 for all n > N.

Since p = ¢ + r, this implies that p%q = 1. By using the identity
(3-6.1)

YN — ——

T+ qyn + Yn—k

ynt1 —1=(p—q)

and the assumption yy = p%q, then the right side of the identity equal

zero, implies yy11 = 1.
For the next term yn.o

,
Yn+1 — 5

T4 qYns1 + YN—k+1

Yny2z — 1= (p—q)

then the right side of the identity equal zero since yy;1 = p%q =1,

implies yy12 = 1. By induction y,, = 1 for all n > N.

Since p < g+, implies that - = 1. By using the identity 1}

T
Yn pP—q

T+ qyn + Yn—k

yn+1 —1=(p—q)

and the assumption p > ¢, then the right side of the identity less than
zero, implies yy11 < 1.
For the next term yn o

.
Yn+1 = 5

T+ QYN+1 + YN—k+1

yny2 — 1= (p—1q)

-
p—q’

then the right side of the identity less than zero since yyy1 < 1 <

implies yn12 < 1. By induction y, < 1 for all n > N.

Since ¢ < p < ¢+ £, from the left side 1 < 2, and from the right

r

side p — g < % implies 4 < %. Then we have that 1 < § < 55
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. T + . .
Since f(x,y) = _prTy is nondecreasing in x and y for each x,y €
r+qr+y

(0, £], then

y1:f<907y—k)<f( L , : )21,

which implies that y; € [0,1] C [0, %L and

)< i)

By the induction we have that y, € [0,1] C [0, £] for every n € N.

Y2 = f(y1,Y-r41) < f <

On the other hand, the condition 1 < = Is equivalent to p;:’" <1,

that is § < 1 from which it follows that g € (0, 1).

Similar to the above, since q—i—%’" < p < q+r, implies % <p—q<r,

then ¢
p

And the function f(z,y) in nondecreasing in z and y for each z,y €

(0, p%q], which implies that

T T
ylzf(y(]?y—k)gf( ) ):]—7
bp—q p—gq

which implies that y; € [0,1] C [0, ;=], and

y2:f(y1,yk+1)<f<1, : )gf( : ) : )Zla

p—4q P—q p—4g

which implies that y, € [0,1] C [0, = ]. By the induction we have that
€ [0,1] C [0, ;=] for every n € N.

Now note that the condition p < ¢ 4+ r implies that

p+1—r<q+r+1—r
q+1 q+1

Y

which means that y € (0,1), as desired.
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It is easy to see that the function f(z,y) is strictly increasing in x

for each fixed y € (0, ), and nonincreasing in y for each fixed x > piq.

From this and ({i), we have

r p P
1=f( a‘)gyl:f(y(byk)g_'
P—q q q

Since p > q + r, implies p%q <landsincep>qg=1< §. So we have
that -= <1 < 2. From this, we have that y; € [1,2] C [-=,2]. By
the induction it follows that y, € [1,] C [-*, ], for every n € N.

Further, we have that p > ¢ + r implies that

p+tl—r q+r+1-—r

y = > = 17
Y qg+1 g+1
1
as well as pr -r < 2—9, which means that § € (1,2), as desired.
q+1 q I

]

Theorem 3.11. Assume that p = q+r, p+1>r, and that {y,}>>_, is a
nonnegative solution of equation . Then the following statements are

true:

(i) yn < E for alln € N.
(i) If for some N >0, yy > 1, then y, > 1 for alln > N.
(#ii) If for some N >0, yn < 1, then y, <1 for alln > N.

Proof. By using theorem ((3.10)), the proof is direct consequence of the as-
sumptions and identity ((3.6.5)). O
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Theorem 3.12. Assume that ¢ > p, p+ 1 > r, and that {y,}>2_, is a

nonnegative solution of equation . Then the following statements are

true:

(i) y, <1 for alln € N.

(i) If for some N >0, yy > %, then ynirps1 > §.

(iii) If for some N 20, yny = =, then yniri1 = 2.

() If for some N >0, yy < %, then ynirs1 < §.

(v) If ¢ < p+pr, then equation possesses an invariant interval [0, 1]

and y € [0, 1], moreover, the interval [0, §] is also an invariant interval
for equation and j € (0,2).

(vi) If p+pr < q < p+ qr, then equation possesses an invariant

interval [0, Z=] and g € [0, =], moreover, the interval [0, 2] is also an
a—p a—p q

invariant interval for equation and g € (0, g).

(vii) If ¢ > p + qr, then equation possesses an invariant interval

=,

interval for equation and y € (2, 1).

1] and g € [=, 1], moreover, the interval [2, 1] is also an invariant

Proof. (i) If we write identity (3.6.1]) in the form

="

T4 qYn + Y-k

Ynt1 — 1= (p—q) n € Ny,

and use the assumption ¢ > p, then the right side of the above identity

is less than zero, which means y,,1 —1 < 0= 9,11 < 1.
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(i)

(iii)

By using the identity (3.6.2))

pr

q—p YnT 35
q TF QYnik+ Un

p
Yntk+1 — 5 = n € Ny

and the assumptions yy > % and g > p, implies that the right side of

the identity is greater than zero, which implies that yn 11 > §.

As in , by using the identity 1) and the assumptions yy = %
and ¢ > p, implies that the right side of the identity is zero, which

implies that yy i1 = g.

Similarly, by identity 1} and the assumptions yy < % and ¢ > p,
implies that the right side of the identity is less that zero, which implies

that ynir+1 < £

Since p < g < p + pr, from left side § < 1 and from right side ¢ — p <
_pr p _pr 1
pr = 1< 2, so we have that £ <1 < . By theorem 1} the

function f(x,y) is strictly increasing in y for each fixed x € (0, 00), and

nondecreasing in z for each fixed y € (0, 1], we have that

pr pr p
ylzf(y07y—k)<f( ) >:_<1a
q—p q—p q

which implies that y; € [0, £] € [0,1].
By the induction y, € [0, 2] C [0, 1] for every n € N.

On the other hand, we have that

<1,

+1-—r

qg+1

as desired.
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(vi)

(vii)

Since p +pr < q¢ < p+ qr, implies pr < ¢ —p < gr then 1 < q;_rp < ;%’

so we have that § < % < 1. By theorem 1' as above, we have

that
pr pr p
?Jl:f(yoay—k)gf( ) >:_<17
q—p q—7p q
which implies that y; € [0, 2] C [0, 2.

By the induction y, € |0, §] c 0, %] for every n € N.

On the other hand, we have that

g:

?

+1-—r r
D PP
q+1 q q—0p

as desired.

Since ¢ > p + qr > p, we have that % < § < 1. On the other hand,
by theorem ((3.9) we have that for this case, the function f(z,y) is
strictly increasing in y for each fixed x € (0, 00), and nonincreasing in

x for each fixed y > %. From this and ({il) it follows that

p pr
_:f(la ) <y1:f<y07yfk)<17
q q—7p

which implies that y; € [£,1] C [2,1].

By the induction y, € [2,1] C [2, 1] for every n € N.

On the other hand, ¢ > p + ¢qr implies that
p p+l—r p+1-—r

<y= < <1,
q 4 qg+1 p+1

as claimed.

The proof is complete. O
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3.7 Existence of Two Cycles

In this section we study the necessary and sufficient conditions of equa-
tion (3.7.1) to have a prime period two solution and we exhibit all prime

period-two solutions of the equation.

First we present the definition of the prime period two solution.

Definition 3.5. We say that a solution {z,}>2 , of the difference equation
(3.5.1)) is periodic if there exists a positive integer p such that z,;, = x,.
The smallest such positive integer p is called the prime period of the solution

of the difference equation.

We study here the periodic solution of our equation,

Tni1 = p%+x“k, n=0,1,2,... (3.7.1)
T+ qTy + Tp_gk

Lets assume that the two periodic nonnegative solutions of our equa-

tion will be in the form

"7¢7¢7¢7¢7"’

e If k£ is odd then

Tp41 = Tp—k

So we get
= PO+
r+qo+Y
6= pY+9o
r+qi+ o

This yields
P(r+qo+y)=po+y (3.7.2)
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o(r+qv+¢)=p+o (3.7.3)
By subtracting equation from equation ([3.7.2) we get the fol-
lowing
r( — o)+ W = ¢°) =p(d —¥) + (¥ — ¢)
= W =0)(r+p—1)+ (- ¢*) =0
implies

W =) r+p—1++4¢)=0
Then either ©) = ¢ or ¢+ ¢ = 1 — (r+p). Then in this case there is no
two periodic nonnegative solution for equation (3.7.1]) unless ¥ + ¢ =
1—(r+p).

Lets now take k to be even and see what we will get.

e If k is even then

Tp = Tn—k

So we get
= pPo+¢
r+q¢+o
b= pY+ 9
r+qy 4+
This yields

v(r+qo+¢)=¢(p+1) (3.7.4)
P(r+qv+¢)=v(p+1) (3.7.5)
By subtracting equation from the equation we get the
following
r—9¢)+@W-9)(p+1) = 0

(Y —=o)r+p+1) = 0
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Then either ¢ = ¢ or r+p+1 = 0 which is impossible since r and p are
nonnegative variables. Then in this case, there exists no two periodic

nonnegative solution for our equation (3.7.1)).

From the above discussion, we have the following theorem.

Theorem 3.13. There exists no two periodic nonnegative solution for the
difference equation

PTy, + Tn—k
T+ qTy + xn—k’

Tpyl = n=20,1,2,...

unless if k is odd and r +p < 1.

3.8 Semi-cycle Analysis

In this section we will study the semi-cycles behavior of solutions of

equation (3.2.1)) relative to the equilibrium point .
Here we give the definitions for the positive and negative semi-cycle

of the solution of a difference equation, relative to an equilibrium point .

Definition 3.6. [I5] Let {y,}>> . be a nonnegative solution of equation

(3-5.1)). A positive semi-cycle of a solution {y,}> _, of equation (3.5.1)) con-

sists of a “string” of terms {y;, Y111, ..., Ym}, all greater than or equal to the

equilibrium g, with [ > —k and m < oo and such that
either [ = -k, orl > —kand y;_1 <y

and

either m = oo, or m < oo and Yy, 41 < ¥.
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Definition 3.7. [I5] Let {y,}>>_, be a nonnegative solution of equation
(3-5.1). A negative semi-cycle of a solution {y,}o> _, of equation ([3.5.1)
consists of a “string” of terms {y;, Yi+1, ..., Ym}, all less than the equilibrium

y, with [ > —k and m < oo and such that
either | = —k, or l > —kand y,_1 > ¥y

and

either m = oo, or m < oo and y,,41 = .

Definition 3.8. A solution {y,} of equation (3.5.1) is called non-oscillatory
if there exists N > —k such that y, > y for all n > N or y, < y for all
n > N.

And a solution {y,} is called oscillatory if it is not non-oscillatory.

Theorem 3.14. [16] Assume that f € C[(0,00) x (0,00), (0,00)] is such
that f(x,y) is increasing in both arguments. Let T be a positive equilibrium
of equation . Then, every oscillatory solution of equation has

semicycles of length k.

Proof. When k = 1, the proof is presented as theorem (1.7.3) in [16]. We
just give the proof of the theorem for k = 2, the other cases for k > 3 are
similar and we omit them.

Assume that {z,} is an oscillatory solution with three consecutive terms
IN-1 2T,y 27 and TN 2> T

with at least one of the inequalities being strict. The proof in the case of

negative semicycle is similar and is omitted. Then by using the increasing
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character of f(x,y) we obtain:

tnye = f(ani,on0) > f(7,7) =7

which shows that the next term x5 also belongs to the positive semicycle.
It follows by induction that all future terms of this solution belong to this

positive semicycle, which is a contradiction. The proof is complete. O]

Theorem 3.15. [16] Assume that f € C[(0,00) x (0,00), (0,00)] is such
that f(x,y) is increasing in = for each fized y, and is decreasing in y for
each fixed x. Let T be a positive equilibrium of equation . Then,
except possibly for the first semicycle, every solution of equation has

semicycles of length at least k + 1.

Proof. When k = 1, the proof is presented as theorem (1.7.4) in Ref.[16]. We
just give the proof of the theorem for k = 2, the other cases for k > 3 are
similar and can be omitted.

Assume that {z,} is an oscillatory solution with three consecutive terms

IN-1, TN, TN+1
such that
IN-1 < T < TNy

or

IN_1> T > TNy

We will assume that

IN-1 < T <ZTNnp1
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the other case is similar and will be omitted.

Then by using decreasing character of f we obtain

Tnye = [Ny, 2n-1) > f(T,2) =7

Now, if x > T then the result follows. Otherwise zy < Z. Hence

Tnis = f(any2,2n) > f(2,2) =2
which shows that it has at least three terms in the positive semicycle. O]

Theorem 3.16. [16] Assume that f € C[(0,00) x (0, 00), (0, 00)] is such that
f(z,y) is decreasing in = for each fixed y, and is increasing in y for each fized
x. Let T be a positive equilibrium of equation . Then, except possibly
for the first semicycle, every solution of equation has semicycles of
length k.

Proof. When k = 1, the proof is presented as theorem (1.7.1) in Ref.[16].
We just give the proof of the theorem for k = 2, the other cases for £ > 3
are similar and we omitted them. Let {z,} be a solution of equation (3.5.1)

with at least three semicycles, then there exists N > 0 such that either
TN-1 < T K TNl

or

IN_1 2T > TNy

We will assume that

TN-1 < T K IN41
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the other case is similar and will be omitted.

Then by using the monotonic character of f(z,y) we have

Tny2 = f(ny1,2n-1) < f(T,2) =7

and
Nz = f(anio,on) > f(7,7) =7
thus
ITNy2 < T < TN43
The proof is complete. O

By using the theorems (3.9)-(3.12) together with theorems ((3.14)-

(3.16)), it is easy to obtain the following results concerning semicycle analysis.
Theorem 3.17. Assume thatp = q, p+1 > r, and {y,}°>_, is a nonnegative

solution of equation . Then the following statements are true:

(i) Except possibly for the first semicycle, every oscillatory solution of equa-

tion has semicycles of length k.

(ii) If (yor = D)(y-rer = )+ (o — 7) > 0, then {ya )32, is not an oscil-

latory solution.
Theorem 3.18. Assume thatp > q, p+1 > r, and {y,}°>_, is a nonnegative

solution of equation . Then the following statements are true:

(i) If p < q+ %, then except possibly for the first semicycle, every oscilla-
tory solution of equation has semicycles of length k.
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(i) If ¢ + % < p < q—+r, then except possibly for the first semicycle,
every oscillatory solution of equation which lies in the invariant

interval |0, p%q] has semicycles of length k.

(iii) If p > q + r, then every oscillatory solution of equation which

lies in the invariant interval [p%q, g] has semicycles of length at least k.

() If p=q+r, then equation does not have oscillatory solutions.

Theorem 3.19. Assume that ¢ > p, p+1 > r, and {y,}°>_, is a nonnegative

solution of equation . Then the following statements are true:

(i) If ¢ < p+ pr, then except possibly for the first semicycle, every oscilla-
tory solution of equation has semicycles of length k.

(i) If p+pr < q < p+qr, then every oscillatory solution of equation

which lies in the invariant interval [0, %] has semicycles of length k.

(iii) If ¢ > p+ qr, then every oscillatory solution of equation which

lies in the invariant interval [%, 1] has semicycles of length k.

(i) If ¢ = p+ qr, then every oscillatory solution of equation has
semicycles of length k. In particular, equation does not have

oscillatory solutions with (y—x — £)(y—p+1 —£) -~ (yo — £) > 0.

3.9 Analysis of Global Stability

In this section we will consider the global asymptotic stability for the

zero and positive equilibrium points of equation (3.2.1)). In section (3.4)), we
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investigated local stability of the zero and positive equilibrium points, so it
is sufficient to investigate the globally attractivity of the zero and positive

equilibrium points.
Now, we present some theorems which will be used in this section.

Theorem 3.20. [0, [16] Consider the difference equation

Ynt1 = [ Yns Yn—k), n=0,1,... (3.9.1)

where k € {1,2,...}. Let I = [a,b] be some interval of real numbers and

assume that

f:la,b] X [a,b] — |[a,b]

1 a continuous function satisfying the following properties:

(a) f(u,v) is nondecreasing in each of its arguments u and v.

(b) The equation
fyy) =y

has a unique positive solution.

Then equation has a unique equilibrium point y € [a,b] and every

solution of equation converges to y.

Proof. Set

mo=a and My=5b

and for i = 1,2,... set

M; = f(Mzel, Mifl) and m; = f(miflymifl)
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Now observe that for each i > 0,

and

Set

m = lim m;
1—00

Then clearly

and M = lim M;.

1—00

m < liminf y; < limsupy; < M

1—00

i—00

and by the continuity of f,
m = f(m,m)

In view of @,

from which the result follows.

and M = f(M,M).

Theorem 3.21. [0, [16] Consider the difference equation

Ynt1 = f(ym ynfk)a

where k € {1,2,...}. Let I = [a,b] be some interval of real numbers and

assume that

n=01,...

f :la,b] X [a,b] — |[a,b]

s a continuous function satisfying the following properties:

(3.9.2)

(a) f(u,v) is nondecreasing in u € |a,b] for each v € [a,b] and nonincreasing

inv € |a,b] for each u € [a,b].
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(b) If (m, M) € [a,b] X [a,b] is a solution of the system
m= f(m,M) and M = f(M,m),

then m = M.

Then equation has a unique equilibrium y and every solution of equa-
tion converges to .

Theorem 3.22. [0, [16] Consider the difference equation
Yni1 = [ WUns Yn—k), n=0,1,... (3.9.3)

where k € {1,2,...}. Let I = [a,b] be some interval of real numbers and
assume that

f:la,b] x [a,b] — |a,b]

is a continuous function satisfying the following properties:

(a) f(u,v) is nonincreasing in u € [a,b] for each v € [a,b] and nondecreasing

inv € |a,b] for each u € [a,b].
(b) If (m, M) € [a,b] x [a,b] is a solution of the system
m:f(Mam) and M:f(maM)a

then m = M.

Then equation has a unique equilibrium y € [a,b] and every solution

of equation converges to .
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Proof. Set

mo=a and My=25b

and for i =1,2,... set
m; = f(Miflymifl) and M, = f(mifla Miq)

Now observe that

and

Set

m=limm; and M = lim M,.
1—00 1—>00

Then clearly

m < liminfy; < limsupy; < M

=00 i—00

and by the continuity of f,
m= f(M,m) and M = f(m,M).
In view of (]ED m = M = y. The proof is complete. m

Theorem 3.23. [0, [16] Consider the difference equation

Ynt1 = [ (Yns Yn—r), n=0,1,... (3.9.4)

where k € {1,2,...}. Let I = [a,b] be some interval of real numbers and
assume that

f:la,b] X [a,b] — |a,b]

s a continuous function satisfying the following properties:
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(a) f(u,v) is nonincreasing in each of its arguments u and v.
(b) If (m, M) € [a,b] x [a,b] is a solution of the system
m:f(MaM) and M:f(m,m),

then m = M.

Then equation has a unique equilibrium y € [a,b] and every solution
of equation converges to .

Proof. Set

mo=a and My=5b

and for : = 1,2, ... set
m; = f(Mz'—l, Mi—l) and M, = f(mi_l,mi_l)

Now observe that

and

Set

m=limm; and M = lim M,.
1—00 1—00

Then clearly

m < liminfy; < limsupy; < M

=00 i—00

and by the continuity of f,

m:f(MaM) and M:f(m>m)a
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and som =M = y.

The proof is complete. O

3.9.1 The Global Stability of the Zero Equilibrium

Here we study the global stability of the zero equilibrium point under

the condition p+1 < r.

Theorem 3.24. Assume that p+1 < r, then the zero equilibrium of equation

3.2.1)) is globally asymptotically stable.

Proof. Consider the function

pT+vy
flay) = ————
r+qr+y

By using theorem (3.9) (illilfiv]), note that f(x,y) is nondecreasing in each
of its arguments in the intervals
[0, =] where p > g

I'=410,2] wherep< g

’q—p

\ [0,00]  where p=gq

Now, let (m, M) € I x I is a solution of the system
m=f(M,M) and M= f(m,m),

then

M+ M
m—L and M = pm +m

S+ M+ M r+gm+m’



3.9 Analysis of Global Stability 67

rm+qmM +mM = pM+ M
rM +gqmM +mM = pm+m

this yields (M —m)(r + p+ 1) = 0, then the only solution is m = M.

Then both conditions of theorem (3.20]) hold, therefore, every solution

of equation (|3.2.1)) converges to ¢ in the interval I.

As 7 is locally asymptotically stable under the condition p+ 1 < r as
shown in subsection (3.4.1)), then by definition (3.2)), it is globally asymptoti-

cally stable on the interval I. O]

3.9.2 The Global Stability of the Positive Equilibrium

Here we study the global stability of the positive equilibrium point
remembering that we studied the local stability of the positive equilibrium

point under the following conditions:

p+1>r, (3.9.5)

and

qg+r<3p+14qgr+pq. (3.9.6)

Theorem 3.25. Assume that p > q, (3.9.5) and (3.9.6) hold, then:

(i) If p < q+ %, then the unique positive equilibrium of equation

on the interval |0, 75’] is globally asymptotically stable.

(ii) If ¢ + % < p < q+r, then the unique positive equilibrium of equation

on the interval |0, p%q] is globally asymptotically stable.
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(iii) If ¢ +r < p < 1+, then the unique positive equilibrium of equation

on the interval [p%q, §] is globally asymptotically stable.

Proof. (i) Consider the function

pr +y
flx,y) = ——
r+qr—+y

By using theorem (3.9) (i), note that f(z,y) is nondecreasing in each
of its arguments in the interval [0, -~_].

By the assumption ¢ < p < ¢ + %, implies that § < 555 SO flx,y) is
nondecreasing in each of its arguments in the interval [0, 2] C [0, -=].

Now, let (m, M) € [0, £] x [0, 2] is a solution of the system

m=f(M,M) and M = f(m,m),

then

rm+qmM +mM = pM+ M

rM +gqmM +mM = pm+m

this yields (M — m)(r + p+ 1) = 0, then the only solution is m = M.
Therefore, both conditions of theorem ([3.20)) hold, then every solution
of equation (3.2.1)) converges to ¢ in the interval [0, §].

As g is locally asymptotically stable under the conditions (3.9.5) and
(3-9.6)), then it is globally asymptotically stable on the interval 0, %] by
the definition ((3.2)).
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(ii)) As we have seen above, by theorem (3.9) the function f(z,y) is

nondecreasing in each of its arguments in the interval [0, zﬁz]'

Let (m, M) € [0, =] x [0, ==] is a solution of the system
p—q p—q

m=f(M,M) and M = f(m,m),

then

rm+qmM +mM = pM+ M

rM +gmM +mM = pm+m

this yields (M — m)(r + p+ 1) = 0, then the only solution is m = M.
Therefore, both conditions of theorem ([3.20)) hold, then every solution

of equation 1) converges to ¢ in the interval [0, p%]

q

Since g is locally asymptotically stable under the conditions (3.9.5)) and
1} then it is globally asymptotically stable on the interval [0, -

’ p—q]

by the definition ({3.2]).

(iii) By theorem (3.9)) the function f(x,y) is nondecreasing in x

r
pP—q

and nonincreasing in y in the interval [-~~ 00). By the assumption
q+%<p<q+r, implies %" < p—gq < r then 1<p%q < g, i.e. the

interval [=, k] C [-X, 00).

Let (m, M) € [=, 2] x [-=, ] is a solution of the system

m:f<m7M) and M:f<M7m)7

then
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rm+qm*+mM = pm+ M

rM +qM?* +mM = pM+m

this yields
(M —m)[r4+qM+m)—p+1]=0

p—(1+7r)

q
assumption p < 1+ r. So the only solution is m = M.

Then either m = M or M +m = which contradicts the

Then both conditions of theorem (3.21]) hold, therefore every solution

of equation ([3.2.1) converges to ¥ in the interval [p%q, g].

By definition (3.2)), ¥ is locally asymptotically stable under the condi-
tions (3.9.5) and (3.9.6)), then it is globally asymptotically stable on the

interval [, E].
p—aq’q

Theorem 3.26. Assume that p < q, and hold, then:

(i) If ¢ < p + pr, then the unique positive equilibrium of equation

on the interval |0, %’] is globally asymptotically stable.

(ii) If p+pr < q < p+ qr, then the unique positive equilibrium of equation
on the interval |0, quT] is globally asymptotically stable.

p

(iii) If ¢ > p + qr, then the unique positive equilibrium of equation
on the interval [%, 1] is globally asymptotically stable.
Proof. (i) Consider the function

pr +y
flx,y) = ——
r+qr—+y
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By using theorem , note that f(x,y) is nondecreasing in each
of its arguments in the interval [0, 2-].
By the assumption p < g < p+ pr, implies that % >1> §, so f(x,y)
is nondecreasing in each of its arguments in the interval [0, 2] C [0, Z].

Now, let (m, M) € [0, £] x [0, 2] is a solution of the system
m=f(M,M) and M= f(m,m),

then

M+ M
m:L and M = pm +m

T+ M+ M r+gm+m’
rm+qmM +mM = pM+ M

rM +gqmM +mM = pm+m

this yields (M —m)(r + p + 1) = 0, then the only solution is m = M.
Then both conditions of theorem ((3.20) hold, therefore, every solution

of equation ([3.2.1]) converges to 7 in the interval [0, 5].

As g is locally asymptotically stable under the conditions (3.9.5) and
(3-9.6), then it is globally asymptotically stable on the interval 0, §] by

the definition (3.2)).

As we see above, by theorem ((3.9) the function f(x,y) is nonde-

pr

creasing in each of its arguments in the interval [0, . p].

Let (m, M) € [0, 2] x [0, 2] is a solution of the system
q—p q—p

m:f<M7M) and M:f(mvm)a

then
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(i)

rm+qmM +mM = pM+ M

rM +gmM +mM = pm+m

this yields (M — m)(r +p+ 1) = 0, then the only solution is m = M.

Therefore, both conditions of theorem ([3.20]) hold, then every solution
of equation (3.2.1)) converges to ¢ in the interval [0, %].

Since g is locally asymptotically stable under the conditions (3.9.5)) and
l) then it is globally asymptotically stable on the interval [0, =]

q—p
by the definition ({3.2]).

By theorem ((3.9)) the function f(x,y) is nonincreasing in z and

nondecreasing in y in the interval [, 1] C [25, 00).

Let (m, M) € [2= 1] x [Z, 1] is a solution of the system
q—p q—p

m:f<M’M) and M:f(m,m),

then

rm+qmM +mM = pM+ M

rM +gqmM +mM = pm-+m

this yields (M — m)(r + p+ 1) = 0, then the only solution is m = M.
Therefore, both conditions of theorem ([3.22)) hold, then every solution

of equation ([3.2.1) converges to ¥ in the interval [%, 1].

By definition (3.2)), y is locally asymptotically stable under the condi-
tions (3.9.5)) and (3.9.6)), then it is globally asymptotically stable on the

interval [2,1].
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]

Theorem 3.27. Assume thatp = q, (5.9.5) and (5.9.0) hold, then the unique

positive equilibrium of equation is globally asymptotically stable.

Proof. Consider the function

pr+y
floy) = ————
r+pr+y

By using the derivative of f(x,y) with respect to x and y, then f(x,y) is

nonincreasing in each of its arguments.

Now, let (m, M) € [0, 00] x [0, 00] is a solution of the system
m=f(M,M) and M= f(m,m),

then
M+ M
o MM M:M7
r+pM+ M r+pm+m

rm+qmM +mM = pM+ M
rM +gqmM +mM = pm+m
this yields (M — m)(r + p+ 1) = 0, then the only solution is m = M.

Therefore, both conditions of theorem ((3.23)) hold, then every solution
of equation (3.2.1]) converges to ¥.

As g is locally asymptotically stable under the conditions (3.9.5)) and
(3.9.6)), then it is globally asymptotically stable by the definition (3.2]). O



CHAPTER 4

Special Cases of SyABC =0

In this chapter we will study the character of solutions of equation
(3.0.1), where one or two of the parameters in equation (3.0.1) are zeros.

There are many equations that arise by considering zero parameters.

Observe that some of these equations are quite interesting and have
been studied by some researchers, while few of them are meaningless such as
the case when all the parameters in the denominator or the numerator are

Zero.

4.1 One of the Parameters SyABC =0

In this section we will study the characteristics of the solutions of

equation ([3.0.1)), where one of the parameters 3, v, A, B or C equals zero.

4
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There are five such equations, namely:

Tus = 4T Banan_k’ n=01,... (4.1.1)
Tl = A—i—B:zixj G =01 (4.1.2)
Tt = %, n=0,1,... (4.1.3)
Tngr = %, n=01,... (4.1.4)
Tl = %, n=0,1,... (4.1.5)

where the parameters 3, v, A, B and C are positive real numbers and the

initial conditions x_k,x_j11,...,To are arbitrary nonnegative real numbers.

YLn—k
A+Bz,+Cxy_y

4.1.1 Characteristics of x,,1 =

The change of variables x, = Zy, reduces equation (4.1.1)) to the

difference equation

Yn—k
Yn+1 = y nzO,l,.-. 4.1.6
- p+qyn+yn—k ( )
where p = % and g = g.

To find the equilibrium points of equation (4.1.6), assume that

_ Y
y:f
ptqy+y
then
1 —
y=0 or y:—p
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By assuming f(x,y) = ]ﬁ, then the linearization of equation
(4.1.6) is
Zn+1 — _?y — an_ p—i__qy_ QZn—kZO
(p+aqy+79) (p+aqy+7)

Theorem 4.1. The following statements are true:

(i) Assume p > 1, then the zero equilibrium point of equation 18

globally asymptotically stable.

(ii) Assume p <1 and q < 1, then the positive equilibrium point y = % of

1
equation 15 globally asymptotically stable.

Proof. We find the linearized equation about zero equilibrium

1
Zn+1 — ]_jznik =0 (417)

The proof of local stability follows immediately by applying theorem ((3.3)
on equation (4.1.7]).

The linearized equation about positive equilibrium is

pi=a  _pta
g+1™" qg+17"

—0 (4.1.8)

Zn+l —

and then apply theorem (3.3)) to satisfy the local stability.

By applying theorem (3.22) on the properties of the function

flz,y) = L, this yields the global asymptotic stability of the two
ptgr+y
equilibrium points separately. O

Theorem 4.2. Assume that p < 1 and k odd, then equation has
prime period two solution. If k even then equation has no prime

pertod two solution.
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Proof. Let
0,0,

be a period two solution of equation (4.1.6]), where ¢ and ¢ are two arbitrary

positive and distinct real numbers.

o If k is odd, then y,11 = y,_x and ¥, ¢ satisfy the following system:

Y b= ¢

¢:p+q¢+w Cptqh+¢

simplifying the relation in the system to get

W=9)lp+(W+¢)—1=0

implies that

but ¥ and ¢ are nonnegative, then

1—p>0 = p<1 as expected.

e If k is even, then y, = v, and 1, ¢ satisfy the following system:

e and = 4

w:p+q¢+¢ ¢_p+qw+w

simplifying the relation in the system to get

(Y —=0)p+1)=0

implies that ¢» = ¢ or p+ 1 = 0 which is impossible.

The proof is complete. O
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By

4.1.2 Characteristics of z,1 = -5 -

The change of variables z, = gyn reduces equation 1’ to the

difference equation

Yn

Ynt1 = , n=0,1,... (4.1.9)
P Yt Ynk
where p = % and g = g.
Let
_ (]
Yy= —7—/—"—"72
pt+aqy+y
this yields that the equilibrium points are
1—p
y=0 or y=——.
Y Y q+1
Assuming the function f(z,y) = L, then the linearized equa-
pt+aqr+y

tion associated with equation (4.1.9)) about zero equilibrium point is

1
Zn4+1 — "Rn = 0
p

and the linearized equation about the positive equilibrium point is

z —1+pqz —p_lz =0
n+1 q+1 n q+1n—k

By applying the theorems (3.3) and (3.21)), we can construct the fol-

lowing theorem.

Theorem 4.3. The following statements are true:

(i) Suppose that p > q, then the zero equilibrium point of equation

1s globally asymptotically stable.
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(ii) Suppose that p < 1 and the initial conditions of equation are

nonnegative, then the positive equilibrium point y = ﬁ 1s globally

asymptotically stable.

4.1.3 Characteristics of 7,1 = —gi”igxxnfi

The change of variables x, = Zy, reduces equation (4.1.3) to the

difference equation

Ynt1l = M, n=20,1,... (4.1.10)
qYn +ynfk

where p = g and g =

= [

To avoid a degenerate situation, assume that p # q.

To find the equilibrium points of equation (4.1.10]), assume that

+
+

Y|
<

p
q

g:

<
L

implies that the only equilibrium point is

_ p+1
Y q+1
: pr +y : . . .
By assuming f(x,y) = Y then the linearized equation associated
qr +y
with equation (4.1.10) about y = f}% is
pP—q q—7p

=0.

Zpal — Zn — Zp—
i gp+qg+p+1 gp+qg+p+1 k

Equation (4.1.10)) investigated in [20] by M. Saleh and S. Abu-Baha.

Here are the main results.



4.1 One of the Parameters fyABC = 0 80

Theorem 4.4. The following statements are true:

(i) Assume that p < q, and k is odd, then the positive equilibrium of equa-

tion (4.1.10) is globally asymptotically stable when ¢ < pq+ 3p + 1.

(ii) Assume that p > q, and ¢ < pq+ 3p + 1, then the positive equilibrium

of equation (4.1.10]) is globally asymptotically stable.

Theorem 4.5. The following statements are true:

(i) If p > q, then equation (4.1.1(}) has no nonnegative prime period-two

solutions.

(ii) If p < q, then equation (4.1.10) has nonnegative prime period-two so-

lutions if and only if k is odd and q > pg+ 3p + 1.

ST _ Pratnan_k
4.1.4 Characteristics of =, = T

The change of variables x, = Zy, reduces equation (4.1.4) to the

difference equation

I kT S—— T (4.1.11)

q + Yn—k ’

where p = g and q =

A
~E
To find the equilibrium points of equation (4.1.11]), assume that

Py+y
q+y

g:
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implies that the equilibrium points

y=0 or y=p—q+1

Assuming that the function f(z,y) = prty

, then the linearized equation

associated with equation (4.1.11)) about zero equilibrium point is

1
Zn4+1 — azn — —Zpp =0

and the linearized equation about the positive equilibrium point is

p_, _4=p
p+17" p+17"

Zn+1 — =0.

Equation (4.1.11)) investigated by Li et al in [I8] and A. Farhat in [11]

independently. Here are the main results of their studies.

Theorem 4.6. The zero equilibrium point of equation (4.1.11]) is globally
asymptotically stable under the condition p+ 1 < q. Moreover, the positive
equilibrium point y = p — q + 1 is globally asymptotically stable under the

condition —1 < p—q < 1.

Theorem 4.7. (i) Assume thatp < q. If y, < %, then y,,1 < 1%‘ Further-

q
p

more, every nonnegative solution of equation (4.1.11|) eventually enters

the interval [0, 1].
p

(ii) Assume that p > q. If y, > %, then yni1 < %. Furthermore, every

nonnegative solution of equation (4.1.11) eventually enters the interval

Theorem 4.8. The equation (4.1.11) has no nonnegative solution with prime

pertod two under any condition.
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4.1.5 Characteristics of z, .1 = %

The change of variables z, = %yn reduces equation {D to the

difference equation

::yn4_pyn—k

, n=01,... (4.1.12)
q+ Yn

Yn+1

where p = % and ¢ = %.

To find the equilibrium points, assume that

py+y
q+y

j=
then

y=0 or y=p—-q+1

Equation (4.1.12) investigated by Mazrooei-Sebdani et al. in [19] and
Yan et al. in [23] also by Jaberi et al in [7], and the following are main results

of their studies.

Theorem 4.9. (i) If p+1 < g, then the zero equilibrium point of equation
is globally asymptotically stable.

(i) If p < q < p+ 1, then the positive equilibrium point y=p—q+ 1 is

locally asymptotically stable.

Theorem 4.10. The following statements are true:

(i) Assume k is odd, then equation has prime period two solution

"'a¢7¢a¢>¢a"-

if and only if p=q+ 1.
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(ii) Assume k is even, then equation does not have prime period

two solution.

4.2 Two of the Parameters SvABC =0

In this section we will study the character of solution of equation
(3.0.1)), where two parameters of 3, v, A, B and C are zero. There are eight

cases for this equation, namely:

Tl = %, n=01,... (4.2.1)
Tl = %’ n=01,... (4.2.2)
Tpr1 = %’E;, n=0,1,... (4.2.3)
Tt = %, n=01,... (4.2.4)
Tpyl = %, n=0,1,... (4.2.5)
Tt = %, n=0,1,... (4.2.6)
Tl = ﬁx’b;—?ﬁ’"“’“ n=0,1,... (4.2.7)
S e e L S (4.2.8)

Bz, ’
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VLn—k

4.2.1 Characteristics of x,,1 = BotCr s

The change of variables x, = ﬁ reduces equation 1’ to the

difference equation

o1 =p+ L5 p=0,1, (4.2.9)

n

Q

where p = 3.

Equation (4.2.9)) investigated by El-Owaidy et al in [9] and M. Saleh
& M. Alogeili in [21] independently.

VYTn—k

4.2.2 Characteristics of z,.1 = 77—

The change of variables z,, = yin reduces equation (4.2.2) to the dif-

ference equation

A C
Ynil = —Yn_k + —, n=20,1,... (4.2.10)
8 Y

and this equation is linear first order difference equation.

4.2.3 Characteristics of z,.1 = Z_fg;

The change of variables z,, = Ly, reduces equation (4.2.3) to the

difference equation

n=0,1,... (4.2.11)

where p = £.

2|
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To find the equilibrium points of equation (4.2.11)), let

v

y= -
Pty

then the equilibrium points are

y=0 or y=1-—p

Assuming the function f(z,y) = %, then the linearized equation
p+x
associated with equation (4.2.11)) about zero equilibrium point is

1
Zn4+1 — —Rn—k — 0
p

and the linearized equation about the positive equilibrium point is

Zn4+1 — (p - 1)zn — Zp— =0

Now, by applying the theorems (3.3 and (3.22)), we can construct the

following two theorems.

Theorem 4.11. Assume that p > 1, then the zero equilibrium point of equa-

tion (4.2.11) is globally asymptotically stable.
Theorem 4.12. Assume that p < 1, then the zero and positive equilibrium
points of equation (4.2.11) are both unstable.

Theorem 4.13. Assume that p = 1, then equation (4.2.11|) has solution with

prime period two when k is odd.

Proof. Let
R N X I N

be a period two solution of equation (4.2.11]), where 1 and ¢ are two arbitrary

positive and distinct real numbers.
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e If k£ is odd, then y,11 = ¥, and 9, ¢ satisfy the following system:

B _ 9
Trre M 0Ty

simplifying the relation in the system to get

¢

(¥ —=0)[p—1]=0

implies that p = 1 as expected.

e If £k is even, then y, = y,_ and ¥, ¢ satisfy the following system:
L6 e b
p+y p+¢

simplifying the relation in the system to get

(8

(V=0)lp+W+¢)+1]=0
implies that
b=¢ or Yt+o=-(p+1)

which contradicts that ¢) and ¢ are nonnegative.

The proof is complete. O

1 3 — ﬁxn
4.2.4 Characteristics of r,,1 = JET g
The change of variables x,, = Ciyn reduces equation (4.2.4) to the
difference equation
_ Yn _
Ynil1 =P+ , n=0,1,... (4.2.12)
Yn—k
_ B
where p = 2.

Equation (4.2.12)) investigated by Abu-Saris and DeVault in [1].
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4.2.5 Characteristics of x,,1 = M%L:;_k

The change of variables z, = %yn reduces equation 1’ to the

difference equation

PYn

P p=0,1,... 4.2.13
1+yn—k ( )

Yn+1 =

=

where p = 4.

To find the equilibrium points of equation (4.2.13)), let

implies
y=0 or y=p—1.
. . bx . . .
By assuming the function f(z,y) = T+ then the linearized equation
)

associated with equation (4.2.13)) about zero equilibrium point is
Zn4+1 — Pip = 0

and the linearized equation about the positive equilibrium point is

1
Zn+l — Zn — <_ - 1) Zn—k =0
p

We can construct the following theorem easily by applying the theo-

rems (3.3]) and (3.21)).

Theorem 4.14. The following statements are true:
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(i) Assume p < 1, then the zero equilibrium point of equation is

globally asymptotically stable.

(i) Assume p > 1 and the initial conditions of equation are non-
negative, then the positive equilibrium point y = p—1 is globally asymp-

totically stable.

The proof of the theorem follows immediately by applying theorem
(3.3) on the linearized equations and theorem ([3.21).

Theorem 4.15. The equation has no nonnegative solution with

prime period two under any condition.

Proof. Let
R 1 N N I N

be a period two solution of equation (4.2.13)), where 1) and ¢ are two arbitrary

positive and distinct real numbers.

o If kis odd, then y,11 = y,—x and ¥, ¢ satisfy the following system:

b= pY

_po
C1+9 v

14
simplifying the relation in the system to get

W—0)l+p+@+¢)]=0

implies that (¢ + ¢) = —(1 + p) which is impossible since 1) and ¢ are

nonnegative.
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e If k is even, then y, = v, and 1, ¢ satisfy the following system:

_ _ P9
Qb—m and w—m

simplifying the relation in the system to get
(¥ =¢)(1+p) =0

implies that ¢ = ¢ since p # —1.

The proof is complete. O

By,

4.2.6 Characteristics of z,,11 = ;75-

The change of variables z,, = yin reduces equation || to the dif-
ference equation
A B

+1 3 3 ( )

and this equation is linear first order difference equation.

4.2.7 Characteristics of 7,1 = %WZ*’“

The change of variables x,, = gyn reduces equation 1' to the

difference equation

Yni1 =P+ , n=0,1,... (4.2.15)
Yy

where p = %

Equation (4.2.15)) is the same as equation (4.2.12]) which is investigated

by Abu-Saris and DeVault in [1] as mentioned previously.
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4.2.8 Characteristics of r,,1 = Bont7Tn-t x"‘gf”*’“

The change of variables x, = Ly, reduces equation (4.2.8) to the

difference equation

yor1 =p+2E n=0,1,... (4.2.16)

n

where p = g

Equation (4.2.16)) is the same as equation (4.2.9) which is investigated

in [9, 21] independently as mentioned previously.



CHAPTER b

Numerical Approach

In order to support our theoretical discussions and to illustrate the
main results of chapter , we consider several interesting numerical exam-
ples in this chapter. These examples represent different types of qualitative
behavior of solutions to nonlinear difference equation

DPYn + Yn—k
T+ qYn + ynfk’

Ynil = n=0,1,... (5.0.1)

In this chapter, to observe this numerical results clearly, we present
tables of solutions that were carried out using MATLAB code in Appendix
(A.1). We choose different values for the parameters p, ¢ and r. It should be

noted that yg, yx+1,--.,y1, Yo are also different initial values.

To simplify our exposition we restrict our discussion to the following

sections.

91
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5.1 Numerical Approach of Local and Global

Stability

Here in this section, we will study the global stability of our equation

numerically based on some data and figures that we can get using MATLAB.

Example 5.1. Assume that equation (5.0.1) holds, take k = 4 , p = 0.5,

g =3 and r = 1. So the equation will be reduced to the following:

0.5 Yn + Yn—1a
1 + Syn + Yn—4a

Yn+1 =

In this case, the values of p, ¢, and r satisfy the conditions of local stability

(3.9.5) and (3.9.6)), so by theory the value of ¥ is

prl-r 0541-1 1 _ ..
q+1 3+1 8

g:

We assume the initial points yo = 1, y; =8, yo = 5, y3 = 8 and y, = 3, and
the output of the numerical illustrated in the following table (Table and
figure (Fig. , as expected as the theoretical results.

Example 5.2. In this example, let the parameters p = 2, ¢ = 5 and r = 4,
and k = 3. So the equation (5.0.1)) will be reduced to the following:

2yn + Yn—3
4 + 5yn + Yn—3

Yn+1 =
We assume the initial points yg = 3, y1 = 1, y2 = 2 and y3 = 0.5.

In this case, the values of p, ¢, and r satisfy the condition of global

stability of the zero equilibrium point (p+1 < r), and this is clear numerically

as illustrated in table (5.2)) and figure (5.2)).
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- plot of y(n+1)=(p+y(n-k)/Ar+ g y(n)+y(n-k))
; T T T

0.6- : ; ,

05} : : -

Y(N)

041 : , .

02t : : -
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0 20 40 60 80 100 120

N-iteration

Figure 5.1: The Behavior of the equilibrium point of equation vy, =

0.5 Yn+Yn—a
1+3yn+yn—a

5.2 Numerical Approach of Unstable Case

Example 5.3. Assume that equation (5.0.1]) holds, take k = 4 |, p = 0.25,

q = 20 and r = 0.1. So the equation will be reduced to the following:

0.25Yn + Yn—a
0.1+ 20 Yy + Yna

Yn+1 =
We assume the initial points yo =2, y1 =3, yo = 1, y3 = 4 and y4 = 3.

In this case, the values of p, ¢, and r contradict the condition of local

stability (3.9.6)) such that
q+r>3p+1+qr—+pq

204+0.1>3x0254+1+20 x 0.1+ 0.25 x 20
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Table 5.1: The solution of equation y,,1 = %
n o ym |n ym) |n ym | n oy
1 1.0000 || 26 0.1392 || 51 0.1271 || 76 = 0.1253
2 8.0000 || 27  0.1628 || 52 0.1279 || 77  0.1253
3 1 5.0000 || 28  0.1512 || 53  0.1276 || 78  0.1253
4 8.0000 || 29 0.1564 || 54  0.1278 || 79  0.1253
5 1 3.0000 || 30  0.1495 || 55  0.1274 | 80 @ 0.1253
6  0.2273 || 31 1 0.1348 || 56 1 0.1264 | 81 0.1252
7 0.8380 || 32 0.1469 || 57 0.1268 || 82 @ 0.1252
8 0.6365 || 33 1 0.1411 || 58 1 0.1267 || 83 0.1252
9 0.7625 || 34 1 0.1437 || 59  0.1267 | 84 0.1252
10 0 0.5378 || 35  0.1400 || 60 : 0.1265 || 85  0.1252
11 0.1747 || 36 0.1317 || 61  0.1260 || 86  0.1251
12 0.3918 || 37  0.1380 || 62  0.1261 || 87  0.1251
13 0.2960 || 38  0.1351 || 63  0.1261 || 88  0.1251
14 1 0.3435 || 39  0.1364 || 64 0.1261 || 89  0.1251
15 0.2763 || 40 0.1344 || 65 0.1260 || 90  0.1251
16 0.1561 || 41  0.1296 || 66 0.1256 || 91 @ 0.1251
17 0.2526 || 42 0.1328 || 67  0.1257 || 92  0.1251
18  0.2056 || 43  0.1314 || 68  0.1257 || 93  0.1251
19 0.2277 || 44  0.1320 || 69 = 0.1257 || 94  0.1251
20 0.1991 || 45 0.1309 || 70 0.1256 || 95 | 0.1251
21 0.1458 || 46 0.1281 || 71 0.1254 || 96 | 0.1251
22 0.1926 | 47 0.1298 || 72 0.1255 || 97  0.1250
23 1 0.1693 || 48 0.1291 || 73 0.1254 || 98  0.1250
24 0.1800 || 49 0.1294 || 74 0.1254 || 99  0.1250
25 0.1662 || 50 0.1288 || 75 0.1254 || 100 « 0.1250
So we see from the figure and table that there is no any stable

solution for this case.
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- plot of y(n+1)=(p+y(n-k)/Ar+ g y(n)+y(n-k))
i T T T
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Figure 5.2: The Behavior of the zero equilibrium point of equation y,11 =

2Yn+yn—3
4+5 Yn+Yn—3

So, all what we have to say now is that our theoretical discussion was
satisfied with the data we get from our numerical discussion. So we have
correctly illustrated our study for the equation

PYn + Yn—k
T+ qYn + Y-k

Yn+1 = n=20,1,...
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Table 5.2: The solution of equation ¥y, 1 = %
n oy [0 v [ oy | o ym)
1 3.0000 || 26 0.0098 || 51 0.0003 | 76 = 0.0000
2 1.0000 || 27 . 0.0085 || 52 0.0003 || 77 . 0.0000
3 2.0000 || 28  0.0074 || 53  0.0002 || 78  0.0000
4 0.5000 || 29  0.0065 || 54 1 0.0002 || 79  0.0000
5 1 0.4211 || 30 1 0.0056 || 55  0.0002 || 80 ' 0.0000
6  0.2593 || 31  0.0049 || 56 = 0.0002 || 81 = 0.0000
7 0.3452 || 32 0.0043 || 57  0.0001 || 82 @ 0.0000
8 0.1912 || 33 1 0.0037 || 58  0.0001 || 83 = 0.0000
9 0.1494 | 34  0.0033 || 59  0.0001 || 84  0.0000
10 0.1115 || 35  0.0028 || 60 : 0.0001 || 85  0.0000
11 0.1159 || 36  0.0025 || 61  0.0001 || 86  0.0000
12 0.0887 || 37  0.0022 || 62  0.0001 || 87  0.0000
13 0.0711 || 38  0.0019 || 63 | 0.0001 || 88  0.0000
14 0.0568 || 39  0.0016 || 64 : 0.0001 || 89  0.0000
15 0.0522 || 40 0.0014 || 65  0.0000 || 90  0.0000
16 0.0444 || 41 0.0013 || 66 . 0.0000 || 91  0.0000
17 0.0372 || 42 0.0011 || 67 © 0.0000 || 92  0.0000
18 1 0.0309 || 43  0.0010 || 68 1 0.0000 || 93  0.0000
19 0.0271 || 44 0.0008 || 69 : 0.0000 || 94 0.0000
20 £ 0.0236 || 45 0.0007 {| 70 0.0000 || 95 = 0.0000
21 0.0203 || 46 = 0.0006 || 71 0.0000 || 96 = 0.0000
22 0.0173 || 47 0.0006 || 72 0.0000 || 97 = 0.0000
23 0.0150 || 48 0.0005 {| 73 0.0000 || 98  0.0000
24 0.0131 | 49 0.0004 {| 74 0.0000 || 99 . 0.0000
25 0.0114 || 50  0.0004 {| 75 0.0000 || 100 . 0.0000
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08 plot of y(n+1)=(p+y(n-k))Ar+g*y(n)+y(n-k))
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Figure 5.3: The Behavior of unstable solution of equation y,.1 =

0.25 Yn+Yn—a
01420 yn+yn 4
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0.25 yn+yn—a

Table 5.3: The solution of equation yn4+1 = 5775 T

n oy [ o]y oy [ n |y
1 :2.0000 || 26  0.2414 || 51 : 0.1440 || 76 : 0.0143
2 3.0000 || 27 1 0.0402 || 52  0.0168 || 77  0.4474
3 1.0000 || 28 : 0.0293 || 53  0.5142 || 78  0.0150
4 14.0000 || 29 0.4657 || 54 | 0.0138 || 79  0.10064
5 3.0000 || 30 : 0.0138 || 55  0.2291 || 80 « 0.1447
6 0.0443 || 31 : 0.3967 || 56  0.0417 || 81 ' 0.0168
7 0.7555 | 32 0.0173 || 57 0.0286 || 82 | 0.5116
8 0.0733 ] 33 : 0.0709 || 58  0.4394 || 83  0.0138
9 0.7218 || 34 1 0.2437 || 59 0.0139 | 84 : 0.2275
10 : 0.1814 || 35  0.0150 || 60 i 0.3832 || 85  0.0420
11 1 0.0238 || 36 0.5029 || 61 : 0.0176 || 86 : 0.0285
12 1 0.5722 || 37  0.0141 || 62 : 0.0686 || 87 : 0.4392
13 1 0.0186 || 38  0.1647 || 63 | 0.2388 || 88 ' 0.0139
14 1 0.6083 || 39  0.0783 || 64 : 0.0150 || 89  0.3816
15 0.0268 || 40  0.0206 || 65  0.4934 || 90 : 0.0177
16  0.0462 || 41  0.5010 || 66 : 0.0141 || 91 : 0.0682
17 0.3658 || 42  0.0137 || 67  0.1600 || 92 : 0.2396
18 0.0148 || 43 0.3115 | 68 0.0788 || 93 : 0.0150
19 0.6093 || 44 0.0244 || 69 @ 0.0206 || 94 @ 0.4925
20 0.0145 | 45 1 0.0438 || 70 0.4964 || 95 :0.0141
21 0.1140 || 46 : 0.3465 || 71 = 0.0138 || 96 : 0.1592
22 0.1436 || 47 1 0.0142 || 72  0.3054 || 97  0.0793
23 0.0170 || 48 1 0.4524 || 73 = 0.0247 || 98 : 0.0205
24 0.5850 || 49 : 0.0150 || 74 @ 0.0435 || 99 | 0.4964
25 0.0136 || 50 : 0.1073 || 75  0.3458 || 100 : 0.0138
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Appendix

A.1 Matlab Code-Plot Difference Equation

This code of MATLARB is to plot the difference equation

Yooy = D9 + Ynt
| =
T+ QY+ Yoo
with the entered parameters p, ¢, r and the initial values y_g, ..., %o

%Dynamical of Nonlinear Difference Equation
JAmer Jafar

JMaster of Sci Computing Program

clear all;

format short;

Yoot o oo oo o ToToTo oo o o o o o o o o o

99



A.1 Matlab Code-Plot Difference Equation 100

fprintf (’\n First: Input The Constants Values of
the Difference Equation \n’)

disp(’ )

p=input (’The value of the positive parameter p= ’);
g=input (’The value of the positive parameter g= ’);

r=input (’The value of the positive parameter r= ’);

fprintf (’\n Now Enter the initial conditions of the Diff.Equation\n

for i=1:k+1;
fprintf (’Enter the value of y%0.0f \n ’,i-1);
y(i)=input (C ’);
end
for n=k+1:100;
y(n+1)=(p*xy(n)+y(n-k) )/ (r+q*xy(n)+y(n-k)) ;
y(n+1);
end
t=1:101;
ans=[t;y]’;

plot (t(k+5:101) ,y(k+5:101),’b.~?)
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xlabel (’N-iteration’); ylabel(’Y(N)’);

title(’plot of y(nt+1)=(p+y(n-k))/(r+g*xy(n)+y(n-k))’)

hold on

grid on

pl=strcat (’k=’,num2str(k));

p2=strcat(’p= ’,num2str(p),’, r=’ ,num2str(r),’, g= ’,num2str(q));

legend(pl,p2)

D=[ans(1:25,:),ans(26:50,:) ,ans(51:75,:) ,ans(76:100,:)]; disp(D)

A.2 DMatlab Code-Simplify the Linearized

Equation

This code is to find f,(z,y) and fy(x,y) of the function

flz,y) = ngﬁy, then simplify the values of f,(y,y) and f,(g,7y) to find the

linearized equation.

%This code simplify the linearized equation
clear all;
syms x y FO qpr fx fy

FO=(p*x+y)/(r+q*x+y); %define the fuction



A.2 Matlab Code-Simplify the Linearized Equation

102

ybar=(p+1-r)/(q+1); Y%set the equilibrium point value

Fx = diff(FO, x); % differeniate FO with respect to x
latex (Fx) Jwrite the differenial of FO_x in latex
Fy = diff(FO, y); % differeniate FO with respect to y
latex(Fy) Jwrite the differenial of FO_y in latex
%hsubstitite ybar and simplify
SFx=simplify(subs(Fx,{x,y},{ybar,ybar}))

%substitite ybar and simplify
SFy=simplify(subs(Fy,{x,y},{ybar,ybar}))

latex(SFx) Ywrite the simplification in latex

latex(SFy) Y%write the simplification in latex
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